【題目】在平面直角坐標系中,拋物線y=ax2+bx+c(a,b,c是常數(shù),a>0)的部分圖象如圖所示,直線x=1是它的對稱軸.若一元二次方程ax2+bx+c=0的一個根x1的取值范圍是2<x1<3,則它的另一個根x2的取值范圍是

【答案】﹣1<x2<0
【解析】解:由圖象可知x=2時,y<0;x=3時,y>0;由于直線x=1是它的對稱軸,則由二次函數(shù)圖象的對稱性可知:x=0時,y<0;x=﹣1時,y>0;
所以另一個根x2的取值范圍為﹣1<x2<0.
所以答案是:﹣1<x2<0.
【考點精析】掌握拋物線與坐標軸的交點是解答本題的根本,需要知道一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧 于點P,Q,且點P,Q在AB異側(cè),連接OP.
(1)求證:AP=BQ;
(2)當BQ=4 時,求 的長(結(jié)果保留π);
(3)若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EF∥AD∠1=∠2,∠BAC="70"o,求∠AGD。

解:∵EF∥AD,

∴∠2=∠3( )

∵∠1=∠2,

∴∠1=∠3,

∴AB∥DG ( )

∴∠BAC+ ="180"o( )

∵∠BAC=70 o∴∠AGD= 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的方格紙中每個小方格都是邊長為1個單位長度的正方形,在平面直角坐標系中,已知點A(﹣1,0)、B(4,﹣1)、C(3,2).

(1)在所給的直角坐標系中畫出ABC;

(2)把ABC向左平移3個單位,再向上平移2個單位得到A′B′C′,畫出A′B′C′并寫出點C′的坐標;

(3)求A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副直角三角尺(即直角三角形AOB和直角三角形COD)的直角頂點O的重合,其中,在AOB中,∠A=60°,∠B=30°,∠AOB=90°;在COD中,∠C=D=45°,∠COD=90°

1)如圖1,當OA在∠COD的外部,且∠AOC=45°時,①試說明CO平分∠AOB; ②試說明OACD(要求書寫過程);

2)如圖2,繞點O旋轉(zhuǎn)直角三角尺AOB,使OA在∠COD的內(nèi)部,且CDOB,試探索∠AOC=45°是否成立,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l1l2,直線l3和直線l1l2交于點CD,點P是直線l3上一動點

1)如圖1,當點P在線段CD上運動時,PAC,APBPBD之間存在什么數(shù)量關(guān)系?請你猜想結(jié)論并說明理由.

2)當點PC、D點的外側(cè)運動時(P與點C、D不重合,如圖2和圖3),上述(1)中的結(jié)論是否還成立?若不成立,請直接寫出PAC,APBPBD之間的數(shù)量關(guān)系,不必寫理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC的面積為84,BC=21,現(xiàn)將△ABC沿直線BC向右平移a(0<a<21)個單位到△DEF的位置.

(1)BC邊上的高;

(2)AB=10,

①求線段DF的長;

②連結(jié)AE,當△ABE時等腰三角形時,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于實數(shù)p,q,我們用符號min{p,q}表示p,q兩數(shù)中較小的數(shù),如min{1,2}=1,因此,min{﹣ ,﹣ }=;若min{(x﹣1)2 , x2}=1,則x=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點E在邊BC上,點F在邊AD的延長線上,且DF=BE,EF與CD交于點G.

(1)求證:BD∥EF;
(2)若 = ,BE=4,求EC的長.

查看答案和解析>>

同步練習冊答案