解方程:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


下列電視臺(tái)的臺(tái)標(biāo),是中心對(duì)稱圖形的是( 。

    A.    B.                                           C.        D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


計(jì)算:;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,將△ABC沿BC方向平移2cm得到△DEF,若△ABC的周長(zhǎng)為16cm,則四邊形ABFD的周長(zhǎng)為(   )

(A)16cm      (B)18cm      (C)20cm       (D)22cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在△ABC中,AB=2,AC=4,將△ABC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)得到△A′B′C,使CB′∥AB,分別延長(zhǎng)AB,CA′相交于點(diǎn)D,則線段BD的長(zhǎng)為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


類比梯形的定義,我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形”.

(1)已知:如圖1,四邊形ABCD是“等對(duì)角四邊形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度數(shù).

(2)在探究“等對(duì)角四邊形”性質(zhì)時(shí):

①小紅畫(huà)了一個(gè)“等對(duì)角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立.請(qǐng)你證明此結(jié)論;

②由此小紅猜想:“對(duì)于任意‘等對(duì)角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請(qǐng)證明;若不正確,請(qǐng)舉出反例.

(3)已知:在“等對(duì)角四邊形"ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求對(duì)角線AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


一個(gè)圓錐的母線長(zhǎng)是9,底面圓的半徑是6,則這個(gè)圓錐的側(cè)面積是(     )

A.81      B. 27    C.54     D.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


學(xué)生的學(xué)習(xí)興趣如何是每位教師非常關(guān)注的問(wèn)題.為此,某校教師對(duì)該校部分學(xué)生的學(xué)習(xí)興趣進(jìn)行了一次抽樣調(diào)查(把學(xué)生的學(xué)習(xí)興趣分為三個(gè)層次,A層次:很感興趣;B層次:較感興趣;C層次:不感興趣),并將調(diào)查結(jié)果繪制成了圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中提供的信息,解答下列問(wèn)題:

⑴ 此次抽樣調(diào)查中,共調(diào)查了                      名學(xué)生;

⑵ 將圖①、圖②補(bǔ)充完整;

⑶ 求圖②中C層次所在扇形的圓心角的度數(shù);

⑷ 根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估算該校1200名學(xué)生中大約有多少名學(xué)生對(duì)學(xué)習(xí)感興趣(包括A層次和B層次).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


﹣2的絕對(duì)值是  

查看答案和解析>>

同步練習(xí)冊(cè)答案