問題探究

(1)請你在圖中做一條直線,使它將矩形ABCD分成面積相等的兩部分;

(2)如圖點(diǎn)M是矩形ABCD內(nèi)一點(diǎn),請你在圖②中過點(diǎn)M作一條直線,使它將矩形ABCD分成面積相等的兩部分.

(3)如圖,在平面直角坐標(biāo)系中,直角梯形OBCD是某市將要籌建的高新技術(shù)開發(fā)區(qū)用地示意圖,其中DC∥OB,OB=6,CD=4開發(fā)區(qū)綜合服務(wù)管理委員會(huì)(其占地面積不計(jì))設(shè)在點(diǎn)P(4,2)處.為了方便駐區(qū)單位準(zhǔn)備過點(diǎn)P修一條筆直的道路(路寬不計(jì)),并且是這條路所在的直線l將直角梯形OBCD分成面積相等的了部分,你認(rèn)為直線l是否存在?若存在求出直線l的表達(dá)式;若不存在,請說明理由

答案:
解析:

  解:(1)如圖

  (2)如圖連結(jié)AC、BC交與P則P為矩形對稱中心.作直線MP,直線MP即為所求.

  (3)如圖存在直線l過點(diǎn)D的直線只要作DA⊥OB與點(diǎn)A

  則點(diǎn)P(4,2)為矩形ABCD的對稱中心

  ∴過點(diǎn)P的直線只要平分△DOA的面積即可

  易知,在OD邊上必存在點(diǎn)H使得PH將△DOA面積平分.

  從而,直線PH平分梯形OBCD的面積

  即直線PH為所求直線l

  設(shè)直線PH的表達(dá)式為y=kx+b且點(diǎn)P(4,2)

  ∴2=4k+b即b=2-4k

  ∴y=kx+2-4k

  ∵直線OD的表達(dá)式為y=2x

  ∴解之

  ∴點(diǎn)H的坐標(biāo)為(,)

  ∴PH與線段AD的交點(diǎn)F(2,2-2k)

  ∴0<2-2k<4

  ∴-1<k<1

  ∴S△DHF

  ∴解之,得.(舍去)

  ∴b=8-

  ∴直線l的表達(dá)式為y=


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

問題:如圖,在正方形ABCD和正方形BEFG中,點(diǎn)A,B,E在同一條直線上,P是線段DF的中點(diǎn),連接PG,PC.試探究PG與PC的位置關(guān)系及
PG
PC
的值.小聰同學(xué)的思路是:延長GP精英家教網(wǎng)交DC于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過推理使問題得到解決.
請你參考小聰同學(xué)的思路,探究并解決下列問題:
(1)寫出上面問題中線段PG與PC的位置關(guān)系及
PG
PC
的值;(要有具體過程)
(2)若將條件“正方形ABCD和正方形BEFG”改為“矩形ABCD≌矩形BEFG”其它條件不變,畫圖試探求線段PG與PC的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

25、請閱讀下列材料:
已知:如圖1在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E分別為線段BC上兩動(dòng)點(diǎn),若∠DAE=45度.探究線段BD、DE、EC三條線段之間的數(shù)量關(guān)系.
小明的思路是:把△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABE′,連接E′D,使問題得到解決.請你參考小明的思路探究并解決下列問題:
(1)猜想BD、DE、EC三條線段之間存在的數(shù)量關(guān)系式,并對你的猜想給予證明;
(2)當(dāng)動(dòng)點(diǎn)E在線段BC上,動(dòng)點(diǎn)D運(yùn)動(dòng)在線段CB延長線上時(shí),如圖2,其它條件不變,(1)中探究的結(jié)論是否發(fā)生改變?請說明你的猜想并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

11、請閱讀下列材料:
已知:如圖(1)在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E分別為線段BC上兩動(dòng)點(diǎn),若∠DAE=45°.探究線段BD、DE、EC三條線段之間的數(shù)量關(guān)系.小明的思路是:把△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABE′,連接E′D,使問題得到解決.請你參考小明的思路探究并解決下列問題:
(1)猜想BD、DE、EC三條線段之間存在的數(shù)量關(guān)系式,直接寫出你的猜想;
(2)當(dāng)動(dòng)點(diǎn)E在線段BC上,動(dòng)點(diǎn)D運(yùn)動(dòng)在線段CB延長線上時(shí),如圖(2),其它條件不變,(1)中探究的結(jié)論是否發(fā)生改變?請說明你的猜想并給予證明;
(3)已知:如圖(3),等邊三角形ABC中,點(diǎn)D、E在邊AB上,且∠DCE=30°,請你找出一個(gè)條件,使線段DE、AD、EB能構(gòu)成一個(gè)等腰三角形,并求出此時(shí)等腰三角形頂角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下列材料:
問題:正方形ABCD中,M,N分別是直線CB、DC上的動(dòng)點(diǎn),∠MAN=45°,當(dāng)∠MAN交邊CB、DC于點(diǎn)M、N(如圖①)時(shí),線段BM、DN和MN之間有怎樣的數(shù)量關(guān)系?
小聰同學(xué)的思路是:延長CB至E使BE=DN,并連接AE,構(gòu)造全等三角形經(jīng)過推理使問題得到解決.請你參考小聰同學(xué)的思路,探究并解決下列問題:
(1)直接寫出上面問題中,線段BM,DN和MN之間的數(shù)量關(guān)系;
(2)當(dāng)∠MAN分別交邊CB,DC的延長線于點(diǎn)M/N時(shí)(如圖②),線段BM,DN和MN之間的又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并加以證明;
(3)在圖①中,若正方形的邊長為16cm,DN=4cm,請利用(1)中的結(jié)論,試求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請閱讀下列材料:
問題:如圖1,在正方形ABCD和正方形CEFG中,點(diǎn)B、C、E在同一條直線上,M是線段AF的中點(diǎn),連接DM,MG.探究線段DM與MG數(shù)量與位置有何關(guān)系.

小聰同學(xué)的思路是:延長DM交GF于H,構(gòu)造全等三角形,經(jīng)過推理使問題得到解決.
請你參考小聰同學(xué)的思路,探究并解決下列問題:
(1)直接寫出上面問題中線段DM與MG數(shù)量與位置有何關(guān)系
DM=MG且DM⊥MG
DM=MG且DM⊥MG
;
(2)將圖1中的正方形CEFG繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使正方形CEFG對角線CF恰好與正方形ABCD的邊BC在同一條直線上,原問題中的其他條件不變(如圖2).你在(1)中得到的兩個(gè)結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明.
(3)如圖3,將正方形CEFG繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意角度,原問題中的其他條件不變,寫出你的猜想.

查看答案和解析>>

同步練習(xí)冊答案