【題目】2018120日,山西迎來了復興號列車,與和諧號相比,復興號列車時速更快,安全性更好.已知太原南﹣北京西全程大約500千米,復興號”G92次列車平均每小時比某列和諧號列車多行駛40千米,其行駛時間是該列和諧號列車行駛時間的(兩列車中途停留時間均除外).經(jīng)查詢,復興號”G92次列車從太原南到北京西,中途只有石家莊一站,停留10分鐘.求乘坐復興號”G92次列車從太原南到北京西需要多長時間.

【答案】乘坐復興號”G92次列車從太原南到北京西需要小時.

【解析】

設(shè)復興號”G92次列車從太原南到北京西的行駛時間需要x小時,則和諧號列車的行駛時間需要x小時,根據(jù)速度=路程÷時間結(jié)合復興號”G92次列車平均每小時比某列和諧號列車多行駛40千米,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論.

設(shè)復興號”G92次列車從太原南到北京西的行駛時間需要x小時,則和諧號列車的行駛時間需要x小時,

根據(jù)題意得:,

解得:x=,

經(jīng)檢驗,x=是原分式方程的解,

x+=

答:乘坐復興號”G92次列車從太原南到北京西需要小時.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進價比每臺甲種品牌空調(diào)的進價高20%,用7200元購進的乙種品牌空調(diào)數(shù)量比用3000元購進的甲種品牌空調(diào)數(shù)量多2 臺.
(1)求甲、乙兩種品牌空調(diào)的進貨價;
(2)該商場擬用不超過16000 元購進甲、乙兩種品牌空調(diào)共10臺進行銷售,其中甲種品牌空調(diào)的售價為2500元/臺,乙種品牌空調(diào)的售價為3500元/臺.請你幫該商場設(shè)計一種進貨方案,使得在售完這10 臺空調(diào)后獲利最大,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)y= x的圖象與性質(zhì). 小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y= x的圖象與性質(zhì)進行了探究.
下面是小東的探究過程,請補充完整,并解決相關(guān)問題:
(1)函數(shù)y= x的自變量x的取值范圍是;
(2)下表是y與x的幾組對應值,求m的值;

x

﹣4

﹣3

﹣2

﹣1

1

2

3

4

y

m


(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)進一步探究發(fā)現(xiàn),該函數(shù)圖象在第二象限內(nèi)的最低點的坐標是(﹣2, ),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可)
(5)根據(jù)函數(shù)圖象估算方程 x=2的根為 . (精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學相距20m,他們同時出發(fā),同向而行,甲在乙后,圖中L1、L2分別表示他們二人的路程與時間的關(guān)系,看圖回答下列問題:

(1)20s時甲跑了多少米?乙跑了多少米?

(2)甲用幾秒鐘可追上乙?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為(
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雷達二維平面定位的主要原理是:測量目標的兩個信息距離和角度,目標的表示方法為,其中,m表示目標與探測器的距離;表示以正東為始邊,逆時針旋轉(zhuǎn)后的角度.如圖,雷達探測器顯示在點A,B,C處有目標出現(xiàn),其中,目標A的位置表示為,目標C的位置表示為.用這種方法表示目標B的位置,正確的是(

A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)經(jīng)過點A(4,﹣5),與x軸的負半軸交于點B,與y軸交于點C,且OC=5OB,拋物線的頂點為點D.

(1)求這條拋物線的表達式;
(2)連結(jié)AB、BC、CD、DA,求四邊形ABCD的面積;
(3)如果點E在y軸的正半軸上,且∠BEO=∠ABC,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A,P,B,C是圓上的四個點,∠APC=∠CPB=60°,AP,CB的延長線相交于點D.
(1)求證:△ABC是等邊三角形;
(2)若∠PAC=90°,AB=2 ,求PD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰ABC中,∠A=80°,B和∠C的平分線相交于點O

(1)連接OA,求∠OAC的度數(shù);

(2)求:∠BOC。

查看答案和解析>>

同步練習冊答案