如圖3,四邊形ABCDO的內(nèi)接四邊形,∠DCE,則            

BAD=______________.                                                
分析:根據(jù)圓內(nèi)接四邊形的對角互補進行分析,即可得到答案.
解答:解:∵四邊形ABCD是⊙O的內(nèi)接四邊形
∴∠DAB+∠BCD=180°
又∵∠BAD+DCE=180°,∠DCE=60°
∴∠BAD=DCE=60°.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·大連)(本題9分)如圖9,AB是⊙O的直徑,CD是⊙O的切線,切點
為C,BE⊥CD,垂足為E,連接AC、BC.
(1)△ABC的形狀是______________,理由是_________________;
(2)求證:BC平分∠ABE;
(3)若∠A=60°,OA=2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若一個圓柱的底面半徑為1、高為3,則該圓柱的側(cè)面展開圖的面積是【   】
A.6B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011•濱州)如圖,直線PM切⊙O于點M,直線PO交⊙O于A、B兩點,弦AC∥PM,連接OM、BC.
求證:(1)△ABC∽△POM;(2)2OA2=OP•BC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(11·西寧)已知⊙O1、⊙O2的半徑分別是r1=2、r2=4,若兩圓相交,則圓心距O1O2可能取的值是
A.1B.2C.4D.6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(10分)在圓內(nèi)接四邊形ABCD中,CD為∠BCA外角的平分線,F(xiàn)為 上
點,BC=AF,延長DF與BA的延長線交于E.
(1)求證△ABD為等腰三角形.
(2)求證AC•AF=DF•FE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2011貴州安順,13,4分)已知圓錐的母線長力30,側(cè)面展開后所得扇形的圓心角為120°,則該圓錐的底面半徑為          

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如果圓錐的底面周長是20π,側(cè)面展開后所得的扇形的圓心角為120°.則圓錐的母線是________。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(2011•舟山)如圖,半徑為10的⊙O中,弦AB的長為16,則這條弦的弦心距為(  )
A.6B.8
C.10D.12

查看答案和解析>>

同步練習冊答案