已知:有一紙片如圖,其中△ABC中,AD⊥BC,垂足為點(diǎn)D,BD=CD,點(diǎn)M在BA的延長(zhǎng)線上.實(shí)施操作:將紙片沿一直線AN折疊,使AM和AC重合,并且過(guò)點(diǎn)C作CE⊥AN,垂足為點(diǎn)E.
(1)請(qǐng)用尺規(guī),在圖中畫(huà)出折線AN;(保留作圖痕跡)
(2)將圖形補(bǔ)全,求證:四邊形ADCE為矩形;
(3)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?直接寫(xiě)出結(jié)論.

【答案】分析:(1)根據(jù)角平分線的作法得出答案即可;
(2)根據(jù)矩形的有三個(gè)角是直角的四邊形是矩形,已知CE⊥AN,AD⊥BC,所以求證∠DAE=90°,我樣可以證明四邊形ADCE為矩形.
(3)根據(jù)正方形的判定,我們可以假設(shè)當(dāng)AD=BC,由已知可得,DC=BC,由(2)的結(jié)論可知四邊形ADCE為矩形,所以證得,四邊形ADCE為正方形.
解答:(1)解:如圖所示:
作出∠CAM的平分線即為折線AN;

(2)證明:如圖所示:
BD=CD,AD⊥BC,
∴AB=AC,∠BAD=∠DAC.
∵由作圖知AN是△ABC外角∠CAM的平分線,
∴∠MAN=∠CAN.
∴∠DAN=∠DAC+∠CAN=180°=90°.
∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°,
∴四邊形ADCE為矩形.

(3)當(dāng)△ABC滿足∠BAC=90°時(shí),四邊形ADCE是一個(gè)正方形.
理由:
證明:∵AB=AC,
∴∠ACB=∠B=45°,
∵AD⊥BC,
∴∠CAD=∠ACD=45°,
∴DC=AD,
∵四邊形ADCE為矩形,
∴矩形ADCE是正方形.
說(shuō)明:答案只要正確均應(yīng)給分.(如DC=AD,BD=AD等)
點(diǎn)評(píng):此題主要考查了對(duì)矩形的判定,正方形的判定,等腰三角形的性質(zhì),及角平分線的性質(zhì)等知識(shí)點(diǎn)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,且OA=15,OC=9,在邊AB上選取一點(diǎn)D,將△AOD沿OD翻折,使點(diǎn)A落在BC邊上,記為點(diǎn)E.
(1)求DE所在直線的解析式;
(2)設(shè)點(diǎn)P在x軸上,以點(diǎn)O、E、P為頂點(diǎn)的三角形是等腰三角形,問(wèn)這樣的點(diǎn)P有幾個(gè),并求出所有滿足條件的點(diǎn)P的坐標(biāo);
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使四邊形MNED的周長(zhǎng)最小?如果存在,求出周長(zhǎng)的最小值;如果不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:一張直角三角形紙片如圖1放置在平面直角坐標(biāo)系中,一條直角邊OA落在x軸正半軸上,另一條直角邊OB落在y軸正半軸上,且OA=8,OB=6.現(xiàn)再找一個(gè)與Rt△ABO有一條公共邊且不重疊的三角形,使它們拼在一起后能構(gòu)成一個(gè)大的等腰三角形.例如:如圖2,△CBO與△ABO拼成等腰△ABC,則點(diǎn)C坐標(biāo)為(-2,0).請(qǐng)直接寫(xiě)出除圖2情況外,其他所有的所拼成的等腰三角形中除A、B、O三點(diǎn)外另一頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•路南區(qū)一模)已知:有一紙片如圖,其中△ABC中,AD⊥BC,垂足為點(diǎn)D,BD=CD,點(diǎn)M在BA的延長(zhǎng)線上.實(shí)施操作:將紙片沿一直線AN折疊,使AM和AC重合,并且過(guò)點(diǎn)C作CE⊥AN,垂足為點(diǎn)E.
(1)請(qǐng)用尺規(guī),在圖中畫(huà)出折線AN;(保留作圖痕跡)
(2)將圖形補(bǔ)全,求證:四邊形ADCE為矩形;
(3)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?直接寫(xiě)出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:有一紙片如圖,其中△ABC中,AD⊥BC,垂足為點(diǎn)D,BD=CD,點(diǎn)M在BA的延長(zhǎng)線上.實(shí)施操作:將紙片沿一直線AN折疊,使AM和AC重合,并且過(guò)點(diǎn)C作CE⊥AN,垂足為點(diǎn)E.
(1)請(qǐng)用尺規(guī),在圖中畫(huà)出折線AN;(保留作圖痕跡)
(2)將圖形補(bǔ)全,求證:四邊形ADCE為矩形;
(3)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?直接寫(xiě)出結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案