如圖,△ABC中,點D是BC中點,連接AD并延長到點E,連接BE.
(1)若要使△ACD≌△EBD,應(yīng)添上條件:
AC∥BE
AC∥BE
;
(2)證明上題;
(3)在△ABC中,若AB=5,AC=3,可以求得BC邊上的中線AD的取值范圍是AD<4.請看解題過程:由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而AD=
12
AE
,則AD<4.請參考上述解題方法,求AD>
1
1
分析:(1)若要使△ACD≌△EBD,應(yīng)添上條件:AC∥BE;
(2)由AC與BE平行,得到兩內(nèi)錯角相等,再由D為BC的中點,得到BD=CD,利用AAS可得出三角形ACD與EBD全等;
(3)在三角形ABE中,利用兩邊之差小于第三邊,得到AB-BE小于AE,求出AE大于2,由D為AE的中點,得到AD大于1.
解答:(1)解:若要使△ACD≌△EBD,應(yīng)添上條件:AC∥BE;

(2)證明:∵AC∥BE,
∴∠CAD=∠E,∠ACD=∠EBD,
又∵D為BC的中點,
∴BD=CD,
在△ACD和△EBD中,
∠CAD=∠E
∠ACD=∠EBD
BD=CD
,
∴△ACD≌△EBD(AAS);

(3)在△ABE中,AE>AB-BE=5-3=2,
又∵△ACD≌△EBD,
∴AD=DE=
1
2
AE,
∴AD>1.
故答案為:(1)AC∥BD;(3)1.
點評:此題考查了全等三角形的判定與性質(zhì),其中全等三角形的判定方法有:SSS;SAS;ASA;AAS,以及HL(直角三角形判定全等的方法).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,△ABC中,點D在AC上,CD=2AD,∠BAC=45°,∠BDC=60°,CE⊥BD于E,連接AE.已給的圖形中存在哪幾對相似三角形?請選擇一對進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,點D、E分別為AB、AC的中點,連接DE,線段BE、CD相交于點O,若OD=2,求OC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,點D為BC上一點,且AB=AC=CD,則圖中∠1和∠2的關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,點D為AB邊上的一點,點F為BC延長線上一點,DF交AC于點E.下列結(jié)論中不正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,點D在BC上,點E在AB上,BD=BE,下列四個條件中,不能使△ADB≌△CEB的條件是(  )

查看答案和解析>>

同步練習(xí)冊答案