如圖1,已知拋物線的方程C1: (m>0)與x軸交于點B、C,與y軸交于點E,且點B在點C的左側(cè).
(1)若拋物線C1過點M(2, 2),求實數(shù)m的值;
(2)在(1)的條件下,求△BCE的面積;
(3)在(1)的條件下,在拋物線的對稱軸上找一點H,使得BH+EH最小,求出點H的坐標(biāo);
(4)在第四象限內(nèi),拋物線C1上是否存在點F,使得以點B、C、F為頂點的三角形與△BCE相似?若存在,求m的值;若不存在,請說明理由.
圖1
答
(1)將M(2, 2)代入,得.解得m=4.
(2)當(dāng)m=4時,.所以C(4, 0),E(0, 2).
所以S△BCE=.
(3)如圖2,拋物線的對稱軸是直線x=1,當(dāng)H落在線段EC上時,BH+EH最。
設(shè)對稱軸與x軸的交點為P,那么.
因此.解得.所以點H的坐標(biāo)為.
(4)①如圖3,過點B作EC的平行線交拋物線于F,過點F作FF′⊥x軸于F′.
由于∠BCE=∠FBC,所以當(dāng),即時,△BCE∽△FBC.
設(shè)點F的坐標(biāo)為,由,得.
解得x=m+2.所以F′(m+2, 0).
由,得.所以.
由,得.
整理,得0=16.此方程無解.
圖2 圖3 圖4
②如圖4,作∠CBF=45°交拋物線于F,過點F作FF′⊥x軸于F′,
由于∠EBC=∠CBF,所以,即時,△BCE∽△BFC.
在Rt△BFF′中,由FF′=BF′,得.
解得x=2m.所以F′.所以BF′=2m+2,.
由,得.解得.
綜合①、②,符合題意的m為.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com