(2011•德州)為創(chuàng)建“國(guó)家衛(wèi)生城市”,進(jìn)一步優(yōu)化市中心城區(qū)的環(huán)境,德州市政府?dāng)M對(duì)部分路段的人行道地磚、花池、排水管道等公用設(shè)施全面更新改造,根據(jù)市政建設(shè)的需要,須在60天內(nèi)完成工程.現(xiàn)在甲、乙兩個(gè)工程隊(duì)有能力承包這個(gè)工程.經(jīng)調(diào)查知道:乙隊(duì)單獨(dú)完成此項(xiàng)工程的時(shí)間比甲隊(duì)單獨(dú)完成多用25天,甲、乙兩隊(duì)合作完成工程需要30天,甲隊(duì)每天的工程費(fèi)用2500元,乙隊(duì)每天的工程費(fèi)用2000元.
(1)甲、乙兩個(gè)工程隊(duì)單獨(dú)完成各需多少天?
(2)請(qǐng)你設(shè)計(jì)一種符合要求的施工方案,并求出所需的工程費(fèi)用.

解:(1)設(shè)甲工程隊(duì)單獨(dú)完成該工程需x天,則乙工程隊(duì)單獨(dú)完成該工程需(x+25)天.(1分)
根據(jù)題意得:.(3分)
方程兩邊同乘以x(x+25),得30(x+25)+30x=x(x+25),
即x2﹣35x﹣750=0.
解之,得x1=50,x2=﹣15.(5分)
經(jīng)檢驗(yàn),x1=50,x2=﹣15都是原方程的解.
但x2=﹣15不符合題意,應(yīng)舍去.(6分)
∴當(dāng)x=50時(shí),x+25=75.
答:甲工程隊(duì)單獨(dú)完成該工程需50天,則乙工程隊(duì)單獨(dú)完成該工程需75天.(7分)
(2)此問(wèn)題只要設(shè)計(jì)出符合條件的一種方案即可.
方案一:由甲工程隊(duì)單獨(dú)完成.(8分)
所需費(fèi)用為:2500×50=125000(元).(10分)
方案二:由甲乙兩隊(duì)合作完成.
所需費(fèi)用為:(2500+2000)×30=135000(元).(10分)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•德州)為創(chuàng)建“國(guó)家衛(wèi)生城市”,進(jìn)一步優(yōu)化市中心城區(qū)的環(huán)境,德州市政府?dāng)M對(duì)部分路段的人行道地磚、花池、排水管道等公用設(shè)施全面更新改造,根據(jù)市政建設(shè)的需要,須在60天內(nèi)完成工程.現(xiàn)在甲、乙兩個(gè)工程隊(duì)有能力承包這個(gè)工程.經(jīng)調(diào)查知道:乙隊(duì)單獨(dú)完成此項(xiàng)工程的時(shí)間比甲隊(duì)單獨(dú)完成多用25天,甲、乙兩隊(duì)合作完成工程需要30天,甲隊(duì)每天的工程費(fèi)用2500元,乙隊(duì)每天的工程費(fèi)用2000元.
(1)甲、乙兩個(gè)工程隊(duì)單獨(dú)完成各需多少天?
(2)請(qǐng)你設(shè)計(jì)一種符合要求的施工方案,并求出所需的工程費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•德州)某興趣小組用高為1.2米的儀器測(cè)量建筑物CD的高度.如示意圖,由距CD一定距離的A處用儀器觀察建筑物頂部D的仰角為β,在A和C之間選一點(diǎn)B,由B處用儀器觀察建筑物頂部D的仰角為α.測(cè)得A,B之間的距離為4米,tanα=1.6,tanβ=1.2,試求建筑物CD的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•德州)長(zhǎng)為1,寬為a的矩形紙片(),如圖那樣折一下,剪下一個(gè)邊長(zhǎng)等于矩形寬度的正方形(稱為第一次操作);再把剩下的矩形如圖那樣折一下,剪下一個(gè)邊長(zhǎng)等于此時(shí)矩形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.若在第n此操作后,剩下的矩形為正方形,則操作終止.當(dāng)n=3時(shí),a的值為( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(江蘇省蘇州市卷)數(shù)學(xué) 題型:解答題

(2011•德州)在直角坐標(biāo)系xoy中,已知點(diǎn)P是反比例函數(shù)(x>0)圖象上一個(gè)動(dòng)點(diǎn),以P為圓心的圓始終與y軸相切,設(shè)切點(diǎn)為A.
(1)如圖1,⊙P運(yùn)動(dòng)到與x軸相切,設(shè)切點(diǎn)為K,試判斷四邊形OKPA的形狀,并說(shuō)明理由.
(2)如圖2,⊙P運(yùn)動(dòng)到與x軸相交,設(shè)交點(diǎn)為B,C.當(dāng)四邊形ABCP是菱形時(shí):
①求出點(diǎn)A,B,C的坐標(biāo).
②在過(guò)A,B,C三點(diǎn)的拋物線上是否存在點(diǎn)M,使△MBP的面積是菱形ABCP面積的.若存在,試求出所有滿足條件的M點(diǎn)的坐標(biāo),若不存在,試說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案