【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長(zhǎng)CA至點(diǎn)E,使AE=AC;延長(zhǎng)CB至點(diǎn)F,使BF=BC.連接AD,AF,DF,EF.延長(zhǎng)DB交EF于點(diǎn)N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說明理由.
【答案】(1)詳見解析;(2)詳見解析;(3)四邊形ABNE是正方形,理由詳見解析.
【解析】
試題分析:(1)根據(jù)等腰直角三角形的性質(zhì)可得∠ABC=∠ACB=45°,求得∠ABF=135°,∠ABF=∠ACD,再證得BF=CD,由SAS證明△ABF≌△ACD,即可得出AD=AF;(2)由(1)知AF=AD,△ABF≌△ACD,得出∠FAB=∠DAC,證出∠EAF=∠BAD,由SAS證明△AEF≌△ABD,得出對(duì)應(yīng)邊相等即可;(3)由全等三角形的性質(zhì)得出得出∠AEF=∠ABD=90°,證出四邊形ABNE是矩形,由AE=AB,即可得出四邊形ABNE是正方形.
試題解析:(1)證明:∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∴∠ABF=135°,
∵∠BCD=90°,
∴∠ABF=∠ACD,
∵CB=CD,CB=BF,∴BF=CD,
在△ABF和△ACD中,
,
∴△ABF≌△ACD(SAS),
∴AD=AF;
(2)證明:由(1)知,AF=AD,△ABF≌△ACD,
∴∠FAB=∠DAC,
∵∠BAC=90°,
∴∠EAB=∠BAC=90°,
∴∠EAF=∠BAD,
在△AEF和△ABD中,
,
∴△AEF≌△ABD(SAS),
∴BD=EF;
(3)解:四邊形ABNE是正方形;理由如下:
∵CD=CB,∠BCD=90°,
∴∠CBD=45°,
由(2)知,∠EAB=90°,△AEF≌△ABD,
∴∠AEF=∠ABD=90°,
∴四邊形ABNE是矩形,
又∵AE=AB,
∴四邊形ABNE是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在括號(hào)內(nèi)填寫理由.
已知:如圖,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2.求證:CD⊥AB
證明:∵DG⊥BC,AC⊥BC
∴∠DGB=∠ACB=90° ( )
∴DG∥AC( )
∴∠2=∠DCA ( )
∵∠1=∠2∴∠1=∠DCA
∴EF∥CD( )
∴∠AEF=∠ADC( )
∵EF⊥AB
∴∠AEF=90°
∴∠ADC=90° 即CD⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,n+1個(gè)直角邊長(zhǎng)為1的等腰直角三角形,斜邊在同一直線上,設(shè)△B2D1C1的面積為S1,△B3D2C2的面積為S2,…,△Bn+1DnCn的面積為Sn,則S1= ,Sn= (用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】M為雙曲線y=上的一點(diǎn),過點(diǎn)M作x軸、y軸的垂線,分別交直線y=﹣x+m于點(diǎn)D,C兩點(diǎn),若直線y=﹣x+m與y軸交于點(diǎn)A,與x軸相交于點(diǎn)B.
(1)求ADBC的值.
(2)若直線y=﹣x+m平移后與雙曲線y=交于P、Q兩點(diǎn),且PQ=3,求平移后m的值.
(3)若點(diǎn)M在第一象限的雙曲線上運(yùn)動(dòng),試說明△MPQ的面積是否存在最大值?如果存在,求出最大面積和M的坐標(biāo);如果不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的邊BC上的高,再添加下列條件中的某一個(gè)就能推出△ABC是等腰三角形.①BD=CD;②∠BAD=∠CAD;③AB+BD=AC+CD; ④AB-BD=AC-CD;⑤∠BAD=∠ACD.可以添加的條件序號(hào)正確答案是( )
A.①②B.①②③C.①②③④D.①②③④⑤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算.(能用公式計(jì)算的請(qǐng)用公式計(jì)算)
(1)(2)2(2018π)0+;
(2)(2a2)36a2a4;
(3)
(4)(2a+b5) (2ab5) .
(5)
(6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若x滿足(5-x)(x-2)=2,求(x-5)2+(2-x)2的值;
解:設(shè)5-x=a,x-2=b,則(5-x)(x-2)=ab=2,a+b=(5-x)+(x-2)=3,
所以(x-5)2+(2-x)2=(5-x)2+(x-2)2=a2+b2=(a+b)2-2ab=32-2×2=5,
請(qǐng)仿照上面的方法求解下面的問題
(1)若x滿足(9-x)(x-4)=4,求(9-x)2+(x-4)2的值;
(2)已知正方形ABCD的邊長(zhǎng)為x,E,F分別是AD,DC上的點(diǎn),且AE=2,CF=4,長(zhǎng)方形EMFD的面積是63,分別以MF、DF為邊作正方形,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知射線在的內(nèi)部,射線平分,射線平分.
(1)如圖1,若,則__________度;
(2)若,
①如圖2,若射線在的內(nèi)部繞點(diǎn)旋轉(zhuǎn),求的度數(shù);
②若射線在的外部繞點(diǎn)旋轉(zhuǎn)(旋轉(zhuǎn)中、均是指小于180°的角),其余條件不變,請(qǐng)借助圖3探究的大小,直接寫出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有七個(gè)數(shù)﹣1,﹣2,﹣2,﹣4,﹣4,﹣8,﹣8將它們填入圖1(3個(gè)圓兩兩相交分成7個(gè)部分)中,使得每個(gè)圓內(nèi)部的4個(gè)數(shù)之積相等,設(shè)這個(gè)積為m,如圖2給出了一種填法,此時(shí)m=64,在所有的填法中,m的最大值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com