如圖,點在拋物線上,過點作與軸平行的直線交拋物線于點,延長分別與拋物線相交于點,連接,設(shè)點的橫坐標(biāo)為,且.
(1). (4分) 當(dāng)時,求點的坐標(biāo);
(2). (2分)當(dāng)為何值時,四邊形的兩條對角線互相垂直;
(3). (4分) 猜想線段與之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(1)解:(1)點在拋物線上,且,,······························ 1分
點與點關(guān)于軸對稱,.························································ 2分
設(shè)直線的解析式為,
.······················································································· 3分
解方程組,得.································································· 4分
(2)當(dāng)四邊形的兩對角線互相垂直時,由對稱性得直線與軸的夾角等于所以點的橫、縱坐標(biāo)相等, 5分
這時,設(shè),代入,得,.
即當(dāng)時,四邊形的兩條對角線互相垂直.········································· 6分
(3)線段.········································································································ 7分
點在拋物線,且,
得直線的解析式為,
解方程組,得點······················································· 8分
由對稱性得點,··················································· 9分
,
. 10分
解析
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點在拋物線上,過點作與軸平行的直線交拋物線于點,延長分別與拋物線相交于點,連接,設(shè)點的橫坐標(biāo)為,且。
1.當(dāng)時,求點的坐標(biāo);
2.當(dāng)為何值時,四邊形的兩條對角線互相垂直;
3.猜想線段與之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點在拋物線上,過點作與軸平行的直線交拋物線于點,延長分別與拋物線相交于點,連接,設(shè)點的橫坐標(biāo)為,且.
(1).當(dāng)時,求點的坐標(biāo);
(2).當(dāng)為何值時,四邊形的兩條對角線互相垂直;
(3).猜想線段與之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com