精英家教網(wǎng)如圖,直線PCD過圓心O,PA、PB分別切⊙O于A、B,∠APB=60°,PA=4,AB與PD相交于E.
(1)求弦AB的長;
(2)求陰影部分的面積.
分析:(1)根據(jù)切線長定理可以得出∠APB=60°,△PAB為等邊三角形,即可求出;
(2)由S陰影=S半圓O-S△ADE,分別求出各部分的面積即可得出答案.
解答:精英家教網(wǎng)解:(1)∵PA.PB與⊙O相切于A,B兩點
∴PA=PB,
∵∠APB=60°,
∴△PAB為等邊三角形,
∴AB=PA=4;

(2)連接AD,
∵PA,PB為⊙O的切線,
∴OA⊥PA,OB⊥PB,
∴OP平分∠APB,OP垂直平分AB,
∴∠APO=
1
2
∠APB=30°,
∴∠AOP=60°,
∵∠PAO=90°,
∴OA=
AP
3
=
4
3
=
4
3
3
,
∵AE=
1
2
AP=2,
∴AD=
3
AE=2
3
,
∴S陰影=S半圓O-S△ADE
=
1
2
π×(
4
3
3
2-
1
2
×2×2
3
,
=
8
3
π-2
3
點評:此題主要考查了切線長定理與扇形的面積公式等知識,求陰影部分面積不容易求出時,由特殊面積的差得出是常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,平行四邊形ABCD的對角線AC,BD交于點P,E為BC的中點,過E點的圓O與BD相切于點P,精英家教網(wǎng)圓O與直線AC,BC分別交于點F,G.
(1)求證:△PCD∽△EPF;
(2)如果AB=AD,AC=6,BD=8(如圖2).求圓O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》中考題集(51):3.5 直線和圓的位置關(guān)系(解析版) 題型:解答題

如圖1,平行四邊形ABCD的對角線AC,BD交于點P,E為BC的中點,過E點的圓O與BD相切于點P,圓O與直線AC,BC分別交于點F,G.
(1)求證:△PCD∽△EPF;
(2)如果AB=AD,AC=6,BD=8(如圖2).求圓O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第35章《圓(二)》中考題集(18):35.3 探索切線的性質(zhì)(解析版) 題型:解答題

如圖1,平行四邊形ABCD的對角線AC,BD交于點P,E為BC的中點,過E點的圓O與BD相切于點P,圓O與直線AC,BC分別交于點F,G.
(1)求證:△PCD∽△EPF;
(2)如果AB=AD,AC=6,BD=8(如圖2).求圓O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》中考題集(49):3.2 點、直線與圓的位置關(guān)系,圓的切線(解析版) 題型:解答題

如圖1,平行四邊形ABCD的對角線AC,BD交于點P,E為BC的中點,過E點的圓O與BD相切于點P,圓O與直線AC,BC分別交于點F,G.
(1)求證:△PCD∽△EPF;
(2)如果AB=AD,AC=6,BD=8(如圖2).求圓O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《直線與圓、圓與圓的位置關(guān)系》中考題集(23):3.1 直線與圓的位置關(guān)系(解析版) 題型:解答題

如圖1,平行四邊形ABCD的對角線AC,BD交于點P,E為BC的中點,過E點的圓O與BD相切于點P,圓O與直線AC,BC分別交于點F,G.
(1)求證:△PCD∽△EPF;
(2)如果AB=AD,AC=6,BD=8(如圖2).求圓O的直徑.

查看答案和解析>>

同步練習(xí)冊答案