【題目】某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價(jià)x(元)與產(chǎn)品的日銷售量y(件)之間的關(guān)系如下表:

x (元)

15

20

25

y (件)

25

20

15

若日銷售量y是銷售價(jià)x的一次函數(shù).
(1)求出日銷售量y(件)與銷售價(jià)x(元)的函數(shù)關(guān)系式;
(2)求銷售價(jià)定為30元時(shí),每日的銷售利潤.

【答案】
(1)解:設(shè)此一次函數(shù)解析式為y=kx+b(k,b為常數(shù),且k≠0).

解得k=﹣1,b=40

即一次函數(shù)解析式為y=﹣x+40


(2)解:當(dāng)x=30時(shí),每日的銷售量為y=﹣30+40=10(件)

每日所獲銷售利潤為(30﹣10)×10=200(元)


【解析】(1)已知日銷售量y是銷售價(jià)x的一次函數(shù),可設(shè)函數(shù)關(guān)系式為y=kx+b(k,b為常數(shù),且k≠0),代入兩組對(duì)應(yīng)值求k、b,確定函數(shù)關(guān)系式.(2)把x=30代入函數(shù)式求y,根據(jù):(售價(jià)﹣進(jìn)價(jià))×銷售量=利潤,求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B在第一象限,點(diǎn)Cx軸上,點(diǎn)Ay軸上,D、E分別是AB,OA中點(diǎn).過點(diǎn)D的雙曲線BC交于點(diǎn)G.連接DC,FDC上,且DFFC=3:1,連接DE,EF.若△DEF的面積為6,則k的值為( 。

A. B. C. 6 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9)如圖,已知DGBCACBC,EFAB12.試說明CDAB.

解:∵DGBC,ACBC(已知),

∴∠DGBACB90°(垂直定義).

DGAC(__________________).

∴∠2________(兩直線平行,內(nèi)錯(cuò)角相等).

∵∠12(已知),

∴∠1________(等量代換).

EFCD(__________________).

∴∠AEF________ (__________________).

EFAB(已知)

∴∠AEF90°(__________________).

∴∠ADC90°(__________________)

CDAB(__________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的三根木棒首尾相接,不能做成三角形框架的是( 。

A. 5、7、3 B. 7、13、10 C. 5、7、2 D. 5、10、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

116÷23×4

24÷

314[2323

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,CACB,在AED中, DADE,點(diǎn)D、E分別在CA、AB上.

1)如圖①,若∠ACBADE90°,則CDBE的數(shù)量關(guān)系是

2)若∠ACBADE120°,將AED繞點(diǎn)A旋轉(zhuǎn)至如圖②所示的位置,求CDBE的數(shù)量關(guān)系;

3)若∠ACBADE0°< α < 90°),將AED繞點(diǎn)A旋轉(zhuǎn)至如圖③所示的位置,探究線段CDBE的數(shù)量關(guān)系,并加以證明(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年元旦期間,某商場(chǎng)打出促銷廣告,如表所示.

優(yōu)惠

條件

一次性購物不超過200

一次性購物超過200元,但不超過500

一次性購物超過500

優(yōu)惠

辦法

沒有優(yōu)惠

全部按九折優(yōu)惠

其中500元仍按九折優(yōu)惠,超過500元部分按八折優(yōu)惠

小欣媽媽兩次購物分別用了134元和490元.

1)小欣媽媽這兩次購物時(shí),所購物品的原價(jià)分別為多少?

2)若小欣媽媽將兩次購買的物品一次全部買清,則她是更節(jié)省還是更浪費(fèi)?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在△ABC中,AD是∠BAC的平分線,DE⊥AC于E,DF⊥AB于F,且FB=CE,則下列結(jié)論::①DE=DF,②AE=AF,③BD=CD,④AD⊥BC.其中正確的結(jié)論是 . (填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系xOy中,點(diǎn)Ax軸負(fù)半軸上,點(diǎn)By軸正半軸上,OA=OB,函數(shù)的圖象與線段AB交于M點(diǎn),且AM=BM

1)求點(diǎn)M的坐標(biāo);

2)求直線AB的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案