【題目】已知a,b,c是△ABC的三邊,滿足,且a+b+c=12.
(1)試求a,b,c的值;
(2)試求△ABC的面積.
【答案】(1) a=5,b=3,c=4;(2)6
【解析】試題分析:(1)、設(shè)比值等于k,然后將a、b、c用含k的代數(shù)式來進(jìn)行表示,然后代入a+b+c=12求出k的值,從而得出a、b、c的值;(2)、根據(jù)a、b、c的值得出三角形為直角三角形,從而根據(jù)直角三角形的面積計算法則求出三角形的面積.
試題解析:(1)、設(shè),得a=3k-4,b=2k-3,c=4k-8,
∵a+b+c=12,∴3k-4+2k-3+4k-8=12,
解得:k=3,∴a=5,b=3,c=4;
(2)、∵32+42=52,即b2+c2=a2,∴△ABC是直角三角形,∴S△ABC=×3×4=6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,線段AM為BC邊上的高,D是AM上的點,以CD為一邊,在CD的下方作等邊△CDE,連結(jié)BE.
(1)填空:∠ACB=____;∠CAM=____;
(2)求證:△AOC≌△BEC;
(3)延長BE交射線AM于點F,請把圖形補(bǔ)充完整,并求∠BFM的度數(shù);
(4)當(dāng)動點D在射線AM上,且在BC下方時,設(shè)直線BE與直線AM的交點為F.∠BFM的大小是否發(fā)生變化?若不變,請在備用圖中面出圖形,井直接寫出∠BFM的度數(shù);若變化,請寫出變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AD=2AB,點F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF,CF,則下列結(jié)論中一定成立的是____.(把所有正確結(jié)論的序號都填在橫線上)
①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上,點A到原點的距離為2個單位長度,點B在原點右側(cè)且到原點的距離為4個單位長度.則A,B兩點間相距________個單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個分式的分子或分母可以因式分解,且這個分式不可約分,那么我們稱這
個分式為“和諧分式”.
(1)下列分式:①;②;③;④. 其中是“和諧分式”是 (填寫序號即可);
(2)若為正整數(shù),且為“和諧分式”,請寫出的值;
(3)在化簡時,
小東和小強(qiáng)分別進(jìn)行了如下三步變形:
小東:
小強(qiáng):
顯然,小強(qiáng)利用了其中的和諧分式, 第三步所得結(jié)果比小東的結(jié)果簡單,
原因是: ,
請你接著小強(qiáng)的方法完成化簡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線 l上,邊EF與邊AC重合,且EF=FP.
(1)在圖1中,請你通過觀察、測量,猜想并寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系;
(2)將△EFP沿直線l向左平移到圖2的位置時,EP交AC于點Q,連結(jié)AP,
BQ.猜想并寫出BQ 與AP 所滿足的數(shù)量關(guān)系和位置關(guān)系,請證明你的猜想;
(3)AP,BQ .你認(rèn)為(2)中所猜想的BQ 與AP的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點A(1,1),B(3,2),將點A向左平移兩個單位,再向上平移4個單位得到點C.
(1)寫出點C坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com