如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結(jié)果保留根號).
【考點(diǎn)】解直角三角形的應(yīng)用-仰角俯角問題.
【專題】計(jì)算題;幾何圖形問題.
【分析】由題意可先過點(diǎn)A作AH⊥CD于H.在Rt△ACH中,可求出CH,進(jìn)而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.
【解答】解:過點(diǎn)A作AH⊥CD,垂足為H,
由題意可知四邊形ABDH為矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=6,
在Rt△ACH中,tan∠CAH=,
∴CH=AH•tan∠CAH,
∴CH=AH•tan∠CAH=6tan30°=6×(米),
∵DH=1.5,∴CD=2+1.5,
在Rt△CDE中,
∵∠CED=60°,sin∠CED=,
∴CE==(4+)(米),
答:拉線CE的長為(4+)米.
【點(diǎn)評】命題立意:此題主要考查解直角三角形的應(yīng)用.要求學(xué)生借助仰角關(guān)系構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
第十八屆中國(重慶)國際投資暨全球采購會(huì)上,重慶共簽約528個(gè)項(xiàng)目,簽約金額602 000 000 000元.把數(shù)字602 000 000 000用科學(xué)記數(shù)法表示為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB是⊙O的直徑,C是的中點(diǎn),CE⊥AB于E,BD交CE于點(diǎn)F.
(1)求證:CF=BF;
(2)若CD=6,AC=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,矩形紙片ABCD,AB=3,AD=5,折疊紙片,使點(diǎn)A落在BC邊上的E處,折痕為PQ,當(dāng)點(diǎn)E在BC邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng).若限定點(diǎn)P、Q分別在AB、AD邊上移動(dòng),則點(diǎn)E在BC邊上可移動(dòng)的最大距離為( 。
A.1 B.2 C.4 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知a∥b,小亮把三角板的直角頂點(diǎn)放在直線b上,若∠1=40°,則∠2的度數(shù)為( 。
A.30° B.40° C.45° D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
操作:小明準(zhǔn)備制作棱長為1cm的正方體紙盒,現(xiàn)選用一些廢棄的紙片進(jìn)行如下設(shè)計(jì):
說明:
方案一:圖形中的圓過點(diǎn)A、B、C;
方案二:直角三角形的兩直角邊與展開圖左下角的正方形邊重合,斜邊經(jīng)過兩個(gè)正方形的頂點(diǎn)
紙片利用率=×100%
發(fā)現(xiàn):
(1)方案一中的點(diǎn)A、B恰好為該圓一直徑的兩個(gè)端點(diǎn).你認(rèn)為小明的這個(gè)發(fā)現(xiàn)是否正確,請說明理由.
(2)小明通過計(jì)算,發(fā)現(xiàn)方案一中紙片的利用率僅約為38.2%.請幫忙計(jì)算方案二的利用率,并寫出求解過程.
探究:
(3)小明感覺上面兩個(gè)方案的利用率均偏低,又進(jìn)行了新的設(shè)計(jì)(方案三),請直接寫出方案三的利用率.
說明:方案三中的每條邊均過其中兩個(gè)正方形的頂點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com