【題目】如圖,已知公路LAB兩點之間的距離為100米,小明要測量點C與河對岸的公路L的距離,在A處測得點C在北偏東60°方向,在B處測得點C在北偏東30°方向,則點C到公路L的距離CD_____米.

【答案】50

【解析】

CD⊥直線l,由∠ACB=∠CAB30°,AB50mABBC50m,∠CBD60°,根據(jù)CDBCsinCBD計算可得.

如圖,過點CCD⊥直線l于點D,

∵∠BCD30°,∠ACD60°,

∴∠ACB=∠CAB30°,

AB100m,

ABBC100m,∠CBD60°,

RtBCD中,∵sinCBD,

CDBCsinCBD100×50m),

故答案是:50

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】三輛汽車經(jīng)過某收費站下高速時,在2個收費通道A,B中,可隨機選擇其中的一個通過.

1)三輛汽車經(jīng)過此收費站時,都選擇A通道通過的概率是   

2)求三輛汽車經(jīng)過此收費站時,至少有兩輛汽車選擇B通道通過的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A的平分線交BCDEAB上一點,DE=DC,以D為圓心,以DB的長為半徑畫圓.

求證:(1AC⊙D的切線;(2AB+EB=AC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.

請你根據(jù)統(tǒng)計圖解答下列問題:

1)參加比賽的學生共有____名;

2)在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;

3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點.

(1)分別求出一次函數(shù)與反比例函數(shù)的表達式;

(2)過點BBCx軸,垂足為點C,連接AC,求ACB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=12,P是邊AB上一點,把PBC沿直線PC折疊,頂點B的對應(yīng)點是點G,過點BBECG,垂足為E且在AD上,BEPC于點F.

(1)如圖1,若點EAD的中點,求證:AEB≌△DEC;

(2)如圖2,①求證:BP=BF;

②當AD=25,且AE<DE時,求cosPCB的值;

③當BP=9時,求BEEF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司銷售某一種新型通訊產(chǎn)品,已知每件產(chǎn)品的進價為4萬元,每月銷售該種產(chǎn)品的總開支(不含進價)總計11萬元,在銷售過程中發(fā)現(xiàn),月銷售量()與銷售單價(萬元)之間存在著如圖所示的一次函數(shù)關(guān)系

1)求關(guān)于的函數(shù)關(guān)系式.

2)試寫出該公司銷售該種產(chǎn)品的月獲利(萬元)關(guān)于銷售單價(萬元)的函數(shù)關(guān)系式,當銷售單價為何值時,月獲利最大?并求這個最大值.(月獲利=月銷售額一月銷售產(chǎn)品總進價一月總開支)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖l、圖2均為8×6的方格紙(每個小正方形的邊長均為1),在方格紙中各有一條線段AB,其中點A、B均在小正方形的頂點上,請按要求畫圖:

(1)在圖l中畫一直角ABC,使得tan∠BAC=,點C在小正方形的頂點上;

(2)在圖2中畫一個ABEF,使得ABEF的面積為圖1中ABC面積的4倍,點E、F在小正方形的頂點上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A110),點B0,6),點PBC邊上的動點(點P不與點BC重合),經(jīng)過點OP折疊該紙片,得點B′和折痕OP.設(shè)BP=t

)如圖,當BOP=300時,求點P的坐標;

)如圖,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;

)在()的條件下,當點C′恰好落在邊OA上時,求點P的坐標(直接寫出結(jié)果即可).

查看答案和解析>>

同步練習冊答案