【題目】如圖,已知是的弦,點(diǎn)在上,且,聯(lián)結(jié)、,并延長(zhǎng)交弦于點(diǎn),,.
(1)求的大;
(2)若點(diǎn)在上,,求的長(zhǎng).
【答案】(1)30°;(2)4.
【解析】
(1)連接OB,證OD垂直平分AB,在Rt△AOD中通過(guò)解直角三角形可求出∠OAB的度數(shù);
(2)連接OE,證△OBE是等邊三角形,即可知BE的長(zhǎng)度等于半徑.
(1)如圖1,連接OB,
∵,
∴∠AOC=∠BOC,
∴180°∠AOC=180°∠BOC,
∴∠AOD=∠BOD,
∵OA=OB,
∴OD垂直平分AB,
∴AD=BD=AB=2,
設(shè)⊙O的半徑為r,則OD=6r,
在Rt△AOD中,AO2=AD2+OD2,
∴r2=(2)2+(6r)2,
解得,r=4,
∴cos∠OAD==,
∴∠OAD=30°,
即∠OAB=30°;
(2)如圖2,連接OE,
由(1)知,∠OAB=30°,
∵OB=OA,
∴∠OBA=∠OAB=30°,
∵EB∥AO,
∴∠EBD=∠OAB=30°,
∴∠EBO=∠EBD+∠OBA=60°,
∵OE=OB,
∴△OEB是等邊三角形,
∴BE=r=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形.類(lèi)似地,我們定義:至少有一組對(duì)邊相等的四邊形叫做等對(duì)邊四邊形.
(1)如圖,在中,點(diǎn),分別在,上,設(shè),相交于點(diǎn),若,.請(qǐng)你寫(xiě)出圖中一個(gè)與相等的角,并猜想圖中哪個(gè)四邊形是等對(duì)邊四邊形?
(2)在中,如果是不等于的銳角,點(diǎn),分別在,上,且.探究:滿足上述條件的圖形中是否存在等對(duì)邊四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小杰到學(xué)校食堂買(mǎi)飯,看到A、B兩窗口前面排隊(duì)的人一樣多(設(shè)為a人,a>8),就站在A窗口隊(duì)伍的后面,過(guò)了2分鐘,他發(fā)現(xiàn)A窗口每分鐘有4人買(mǎi)了飯離開(kāi)隊(duì)伍,B窗口每分鐘有6人買(mǎi)了飯離開(kāi)隊(duì)伍,且B窗口隊(duì)伍后面每分鐘增加5人.
(1)此時(shí),若小杰繼續(xù)在A窗口排隊(duì),則他到達(dá)窗口所花的時(shí)間是多少?(用含a的代數(shù)式表示)
(2)此時(shí),若小杰迅速?gòu)?/span>A窗口隊(duì)伍轉(zhuǎn)移到B窗口后面重新排隊(duì),且到達(dá)B窗口所花的時(shí)間比繼續(xù)在A窗口排隊(duì)到達(dá)A窗口所花的時(shí)間少,求a的取值范圍.(不考慮其它因素)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,10×10的網(wǎng)格中,A,B,C均在格點(diǎn)上,誚用無(wú)刻度的直尺作直線MN,使得直線MN平分△ABC的周長(zhǎng)(留作圖痕跡,不寫(xiě)作法)
(1)請(qǐng)?jiān)趫D1中作出符合要求的一條直線MN;
(2)如圖2,點(diǎn)M為BC上一點(diǎn),BM=5.請(qǐng)?jiān)?/span>AB上作出點(diǎn)N的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線C:y=x2經(jīng)過(guò)變換可得到拋物線C1:y1=a1x(x﹣b1),C1與x軸的正半軸交于點(diǎn)A,且其對(duì)稱(chēng)軸分別交拋物線C、C1于點(diǎn)B1、D1.此時(shí)四邊形OB1A1D1恰為正方形:按上述類(lèi)似方法,如圖2,拋物線C1:y1=a1x(x﹣b1)經(jīng)過(guò)變換可得到拋物線C2:y2=a2x(x﹣b2),C2與x軸的正半軸交于點(diǎn)A2,且其對(duì)稱(chēng)軸分別交拋物線C1、C2于點(diǎn)B2、D2.此時(shí)四邊形OB2A2D2也恰為正方形:按上述類(lèi)似方法,如圖3,可得到拋物線C3:y3=a3x(x﹣b3)與正方形OB3A3D3,請(qǐng)?zhí)骄恳韵聠?wèn)題:
(1)填空:a1= ,b1= ;
(2)求出C2與C3的解析式;
(3)按上述類(lèi)似方法,可得到拋物線n:yn=anx(x﹣bn)與正方形OBnAnDn(n≥1)
①請(qǐng)用含n的代數(shù)式直接表示出n的解析式;
②當(dāng)x取任意不為0的實(shí)數(shù)時(shí),試比較y2018與y2019的函數(shù)值的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】⊙O的半徑為5cm,弦AB//CD,且AB=8cm,CD=6cm,則AB與CD之間的距離為( )
A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在日常生活中我們經(jīng)常會(huì)使用到訂書(shū)機(jī),如圖MN是裝訂機(jī)的底座,AB是裝訂機(jī)的托板AB始終與底座平行,連接桿DE的D點(diǎn)固定,點(diǎn)E從A向B處滑動(dòng),壓柄BC繞著轉(zhuǎn)軸B旋轉(zhuǎn).已知連接桿BC的長(zhǎng)度為20cm,BD=cm,壓柄與托板的長(zhǎng)度相等.
(1)當(dāng)托板與壓柄的夾角∠ABC=30°時(shí),如圖①點(diǎn)E從A點(diǎn)滑動(dòng)了2cm,求連接桿DE的長(zhǎng)度.
(2)當(dāng)壓柄BC從(1)中的位置旋轉(zhuǎn)到與底座垂直,如圖②.求這個(gè)過(guò)程中,點(diǎn)E滑動(dòng)的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于M(1,3),N兩點(diǎn),點(diǎn)N的橫坐標(biāo)為﹣3.
(1)根據(jù)圖象信息可得關(guān)于x的方程的解為 ;
(2)求一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com