為實(shí)現(xiàn)區(qū)域教育均衡發(fā)展,我市計(jì)劃對某縣、兩類薄弱學(xué)校全部進(jìn)行改造.根據(jù)預(yù)算,共需資金1575萬元.改造一所類學(xué)校和兩所類學(xué)校共需資金230萬元;改造兩所類學(xué)校和一所類學(xué)校共需資金205萬元.
(1)改造一所類學(xué)校和一所類學(xué)校所需的資金分別是多少萬元?
(2)若該縣的類學(xué)校不超過5所,則類學(xué)校至少有多少所?
(3)我市計(jì)劃今年對該縣、兩類學(xué)校共6所進(jìn)行改造,改造資金由國家財(cái)政和地方財(cái)政共同承擔(dān).若今年國家財(cái)政撥付的改造資金不超過400萬元;地方財(cái)政投入的改造資金不少于70萬元,其中地方財(cái)政投入到、兩類學(xué)校的改造資金分別為每所10萬元和15萬元.請你通過計(jì)算求出有幾種改造方案?
解:(1)設(shè)改造一所類學(xué)校和一所類學(xué)校所需的改造資金分別為萬元和萬元.依題意得:解得
答:改造一所類學(xué)校和一所類學(xué)校所需的改造資金分別為60萬元和85萬元.
(2)設(shè)該縣有、兩類學(xué)校分別為所和所.則
∵類學(xué)校不超過5所 w W w .x K b 1.c o M
∴
∴
答:類學(xué)校至少有15所.
(3)設(shè)今年改造類學(xué)校所,則改造類學(xué)校為所,依題意得:
解得
∵取正整數(shù)
∴
共有4種方案.
方案一、今年改造類學(xué)校1所,改造類學(xué)校5所
方案二、今年改造類學(xué)校2所,改造類學(xué)校4所
方案三、今年改造類學(xué)校3所,改造類學(xué)校3所
方案四、今年改造類學(xué)校4所,改造類學(xué)校2所
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,直線x=2和直線y=ax交于點(diǎn)A,過A作AB⊥x軸于點(diǎn)B.如果a取1,2,3,…,n(n為正整數(shù))時(shí),對應(yīng)的△AOB的面積為S1,S2,S3,…,Sn,那么S1= ;S1+S2+S3+…+Sn= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價(jià)40元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價(jià)的辦法,經(jīng)市場調(diào)研,每降價(jià)1元,月銷售量可增加2萬件.
⑴ 求出月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
⑵ 求出月銷售利潤z(萬元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并在下面坐標(biāo)系中,畫出圖象草圖;
⑶ 為了使月銷售利潤不低于480萬元,請借助⑵中所畫圖象進(jìn)行分析,說明銷售單價(jià)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,對于平面內(nèi)任一點(diǎn)(m,n),規(guī)定以下兩種變換①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上變換有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知關(guān)于x、y的方程組滿足且它的解是一對正數(shù)
(1)試用m表示方程組的解; (2)求m的取值范圍;
(3)化簡。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
劉翔為了迎戰(zhàn)2008年北京奧運(yùn)會(huì)刻苦進(jìn)行110米攔訓(xùn)練,教練對他的10次訓(xùn)練成績進(jìn)行統(tǒng)計(jì)分析,若要判斷他的成績是否穩(wěn)定,則教練需要知道劉翔這10次成績的 ( )A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖正方形ABCD中,E為AD邊上的中點(diǎn),過A作AF⊥BE,交CD邊于F,M是AD邊上一點(diǎn),且有BM=DM+CD.
⑴求證:點(diǎn)F是CD邊的中點(diǎn);
⑵求證:∠MBC=2∠ABE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中有一個(gè)邊長為1的正方形,邊,分別在軸、軸上,如果以對角線為邊作第二個(gè)正方形,再以對角線為邊作第三個(gè)正方形,……,照此規(guī)律作下去,則點(diǎn)的坐標(biāo)為_________;點(diǎn)的坐標(biāo)為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com