如圖,把矩形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸、y軸上,連接OB,將紙片OABC沿OB折疊,使點A落在A1的位置.若OB=,則點A1 的坐標為   
【答案】分析:易得OA與AB的長,作A1E⊥BC于點E,利用勾股定理可得A1D與BD的長,根據(jù)三角形面積的不同表示方法可得A1E的長,進而可得點A1的縱坐標,利用勾股定理可得點A1的橫坐標.
解答:解:設(shè)BC與A1O交于點D,作A1E⊥BC于點E,交AO于點F.
∵OB=,,
∴AB=1,AO=2,
∴A1B=1,OA1=2,
∵BC∥OA,
∴∠CBO=∠AOB,
∵∠A1OB=∠AOB,
∴∠A108=∠OBD,
∴OD=BD,
∵A1D2+A1B2=BD2
∴BD=,A1D=,
∴AE=×1÷=,
∴點A1的縱坐標為+1=,
∵A1F2+OF2=OA12,
∴OF=
故答案為
點評:考查折疊問題;綜合利用勾股定理及折疊的性質(zhì)得到A1E的長是解決本題的突破點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,把矩形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸、y軸上,連接OB將紙片沿OB折疊,使A落在A′的位置,若OB=
5
,tan∠BOC=
1
2
,則OA′=
 

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆河南省扶溝縣初三下學期《解直角三角形》檢測題 題型:填空題

如圖,把矩形紙片OA BC放入平面直角坐標系中,使OA、OC分別落在x軸、y軸上,  連結(jié)O B將紙片沿O B折疊,使A落在A′的位置,若O B=,tan∠BOC=,則OA′=

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年河南省扶溝縣初三下冊26章《用函數(shù)觀點看一元二次方程》檢測題 題型:填空題

如圖,把矩形紙片OA BC放入平面直角坐標系中,使OA、OC分別落在x軸、y軸上,   連結(jié)O B將紙片沿O B折疊,使A落在A′的位置,若O B=,tan∠BOC=,則OA′=

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,把矩形紙片OA BC放入平面直角坐標系中,使OA、OC分別落在x軸、y軸上,   連結(jié)OB將紙片沿O B折疊,使A落在A′的位置,若O B=,tan∠BOC=,則OA′=

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,把矩形紙片OA BC放入平面直角坐標系中,使OA、OC分別落在x軸、y軸上,  連結(jié)O B將紙片沿O B折疊,使A落在A′的位置,若O B=,tan∠BOC=,則OA′=

查看答案和解析>>

同步練習冊答案