如圖,Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線交于點(diǎn)O,連接OC,已知AC=5,OC=6,則另一直角邊BC的長(zhǎng)為   
【答案】分析:過(guò)O作OF垂直于BC,再過(guò)A作AM垂直于OF,由四邊形ABDE為正方形,得到OA=OB,∠AOB為直角,可得出兩個(gè)角互余,再由AM垂直于MO,得到△AOM為直角三角形,其兩個(gè)銳角互余,利用同角的余角相等可得出一對(duì)角相等,再由一對(duì)直角相等,OA=OB,利用AAS可得出△AOM與△BOF全等,由全等三角形的對(duì)應(yīng)邊相等可得出AM=OF,OM=FB,由三個(gè)角為直角的四邊形為矩形得到ACFM為矩形,根據(jù)矩形的對(duì)邊相等可得出AC=MF,AM=CF,等量代換可得出CF=OF,即△COF為等腰直角三角形,由斜邊OC的長(zhǎng),利用勾股定理求出OF與CF的長(zhǎng),根據(jù)OF-MF求出OM的長(zhǎng),即為FB的長(zhǎng),由CF+FB即可求出BC的長(zhǎng).
解答:解法一:如圖1所示,過(guò)O作OF⊥BC,過(guò)A作AM⊥OF,
∵四邊形ABDE為正方形,
∴∠AOB=90°,OA=OB,
∴∠AOM+∠BOF=90°,
又∠AMO=90°,∴∠AOM+∠OAM=90°,
∴∠BOF=∠OAM,
在△AOM和△BOF中,
,
∴△AOM≌△BOF(AAS),
∴AM=OF,OM=FB,
又∠ACB=∠AMF=∠CFM=90°,
∴四邊形ACFM為矩形,
∴AM=CF,AC=MF=5,
∴OF=CF,
∴△OCF為等腰直角三角形,
∵OC=6,
∴根據(jù)勾股定理得:CF2+OF2=OC2
解得:CF=OF=6,
∴FB=OM=OF-FM=6-5=1,
則BC=CF+BF=6+1=7.
故答案為:7.

解法二:如圖2所示,
過(guò)點(diǎn)O作OM⊥CA,交CA的延長(zhǎng)線于點(diǎn)M;過(guò)點(diǎn)O作ON⊥BC于點(diǎn)N.
易證△OMA≌△ONB,∴OM=ON,MA=NB.
∴O點(diǎn)在∠ACB的平分線上,
∴△OCM為等腰直角三角形.
∵OC=6,
∴CM=ON=6.
∴MA=CM-AC=6-5=1,
∴BC=CN+NB=6+1=7.
故答案為:7.
點(diǎn)評(píng):此題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,以及等腰直角三角形的判定與性質(zhì)、角平分線的判定,利用了轉(zhuǎn)化及等量代換的思想,根據(jù)題意作出相應(yīng)的輔助線是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個(gè)三角形,且要求其中一個(gè)三角形是等腰三角形.(保留作圖痕跡,不要求寫(xiě)作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點(diǎn)邊上一點(diǎn),DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(zhǎng)(2)求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點(diǎn)D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長(zhǎng)為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案