【題目】定義ab=(a2b+ab+ab2)÷ab,其中a,b都不為零,則2(34)=________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AE和CD,AE分別交CD,BD于點M,P,CD交BE于點Q,連接PQ,下面結(jié)論: ①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④PQ∥AC.
其中結(jié)論正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解關(guān)于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是( )
A.(x﹣1)2=4
B.(x+1)2=4
C.(x﹣1)2=16
D.(x+1)2=16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,E是AD上的一點,F(xiàn)是AB上的一點,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周長為32cm,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣2(k+1)x+k2=0有兩個實數(shù)根x1、x2.
(1)求k的取值范圍;
(2)若x1+x2=3x1x2﹣6,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,正方形ABCD的邊長為4,點E是對角線BD延長線上一點,AE=BD.將△ABE繞點A順時針旋轉(zhuǎn)α度(0°<α<360°)得到△AB′E′,點B、E的對應(yīng)點分別為B′、E′.
(1)如圖1,當(dāng)α=30°時,求證:B′C=DE;
(2)連接B′E、DE′,當(dāng)B′E=DE′時,請用圖2求α的值;
(3)如圖3,點P為AB的中點,點Q為線段B′E′上任意一點,試探究,在此旋轉(zhuǎn)過程中,線段PQ長度的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠ABC=90°,以AB上的一點O為圓心,以O(shè)A為半徑的圓交AC于點D,交AB于點E.
(1)求證: ;
(2)如果BD是⊙O的切線,D是切點,E是OB的中點,當(dāng)BC=2時,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com