已知x-y=2,y-z=2,x+z=14,求x2-z2的值.

解:∵x-z=(x-y)+(y-z)=2+2=4
∴x2-z2=(x+z)(x-z)=14×4=56.
分析:因?yàn)閤2-z2=(x+z)(x-z),已知x+z=14,需要根據(jù)前面兩個(gè)等式構(gòu)造出x-z,通過觀察可知(x-y)+(y-z)=x-z,問題可以得到解決.
點(diǎn)評:本題關(guān)鍵是根據(jù)已知等式,構(gòu)造出x-z,再利用平方差公式求式子的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖為某班35名學(xué)生在某次社會實(shí)踐活動中揀廢棄的礦泉水瓶情況條形統(tǒng)計(jì)圖,圖中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全.已知此次活動中學(xué)生揀到礦泉水瓶個(gè)數(shù)中位數(shù)是5個(gè),則根據(jù)統(tǒng)計(jì)圖,下列選項(xiàng)中的( 。⿺(shù)值無法確定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知c<0,0<|a|<|b|<|c|,
b2c
a
=-
b
a
ac
,則a、b、c由小到大的順序排列
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD,OA與x軸正半軸夾角為60°,點(diǎn)A的橫坐標(biāo)為2,點(diǎn)C的橫坐標(biāo)為-
3
2
,則點(diǎn)B的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程組
x+y=2
y+z=3
z+x=7
,則x+y+z等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a、b(a≠b)分別滿足a2+2a=2,b2+2b=2.求
1
a
+
1
b
的值.

查看答案和解析>>

同步練習(xí)冊答案