如圖,△ABC是等邊三角形,∠DAE=120°,求證:(1)△ABD∽△ECA;(2)BC2=DB•CE.

證明:(1)∵△ABC是等邊三角形,∠DAE=120°,
∴∠DAB+∠CAE=60°,
∵∠ABC是△ABD的外角,
∴∠DAB+∠D=∠ABC=60°,
∴∠CAE=∠D,
∵∠ABC=∠ACB=60°,
∴∠ABD=∠ACE=120°,
∴△ABD∽△ECA;

(2)∵△ABD∽△ECA,
=,即AB•AC=BD•CE,
∵AB=AC=BC,
∴BC2=BD•CE.
分析:(1)由△ABC是等邊三角形,∠DAE=120°可知∠DAB+∠CAE=60°,再由三角形外角的性質(zhì)可知∠DAB+∠D=∠ABC=60°,故∠CAE=∠D,再由∠ABC=60°,∠ACB=60°可知,∠ABD=∠ACE=120°,故可得出△ABD∽△ECA;
(2)由(1)中△ABD∽△ECA可知=,即AB•AC=BD•CE,故可得出結(jié)論.
點(diǎn)評(píng):本題考查的是相似三角形的判定與性質(zhì)及三角形外角的性質(zhì),根據(jù)題意判斷出△ABD∽△ECA是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,⊙O過點(diǎn)B,C,且與BA,CA的延長(zhǎng)線分別交于點(diǎn)D,E,弦DF精英家教網(wǎng)∥AC,EF的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,△ABC是等邊三角形,過AB邊上一點(diǎn)D作BC的平行線交AC于E,則△ADE的三個(gè)內(nèi)角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點(diǎn),∠BAD=15°,將△ABD繞點(diǎn)A點(diǎn)逆時(shí)針方向旋轉(zhuǎn)后到達(dá)△ACE的位置,那么旋轉(zhuǎn)角的度數(shù)是
60°
60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.
(1)直接寫出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案