如圖,甲、乙兩動(dòng)點(diǎn)分別從正方形ABCD的頂點(diǎn)A、C同時(shí)沿正方形的邊開始移動(dòng),甲點(diǎn)依順時(shí)針方向環(huán)行,乙點(diǎn)依逆時(shí)針方向環(huán)行,若乙的速度是甲的速度的4倍,則它們第2000次相遇在邊(  )
A.AB上B.BC上C.CD上D.DA上

根據(jù)題意分析可得:乙的速度是甲的速度的4倍,故第1次相遇,甲走了正方形周長(zhǎng)的
1
2
×
1
5
=
1
10
;從第2次相遇起,每次甲走了正方形周長(zhǎng)的
1
5
,從第2次相遇起,5次一個(gè)循環(huán).
因此可得:從第2次相遇起,每次相遇的位置依次是:DC,點(diǎn)C,CB,BA,AD;依次循環(huán).
故它們第2000次相遇位置與第五次相同,在邊AB上.
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)如圖(1),點(diǎn)M,N分別在等邊△ABC的BC,AC邊上,且BM=CN,AM,BN交于點(diǎn)Q.求證:∠BQM=60°.
(2)判斷下列命題的真假性:
①若將題(1)中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題(1)中的點(diǎn)M,N分別移動(dòng)到BC,CA的延長(zhǎng)線上,是否仍能得到∠BQM=60°?(如圖2)
③若將題(1)中的條件“點(diǎn)M,N分別在正△ABC的BC,AC邊上”改為“點(diǎn)M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?(如圖3)
在下列橫線上填寫“是”或“否”:①______;②______;③______.并對(duì)②,③的判斷,選擇其中的一個(gè)給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,E為正方形ABCD內(nèi)的一點(diǎn),△ABE為正三角形,求∠CED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,DE平分∠ODC交OC于點(diǎn)E,若AB=2,則線段OE的長(zhǎng)為(  )
A.
2
2
B.
2
2
3
C.2-
2
D.
2
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方形ABCD中,F(xiàn)是CD的中點(diǎn),E是BC邊上的一點(diǎn),且AF平分∠DAE
(1)若正方形ABCD的邊長(zhǎng)為4,BE=3,求EF的長(zhǎng)?
(2)求證:AE=EC+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知(如圖):正方形ABCD的邊長(zhǎng)為b,正方形DEFG的邊長(zhǎng)為a.
求:(1)梯形ADGF的面積;
(2)三角形AEF的面積;
(3)三角形AFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

操作示例:
對(duì)于邊長(zhǎng)為a的兩個(gè)正方形ABCD和EFGH,按圖1所示的方式擺放,在沿虛線BD,EG剪開后,可以按圖中所示的移動(dòng)方式拼接為圖1中的四邊形BNED.
從拼接的過(guò)程容易得到結(jié)論:
①四邊形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
實(shí)踐與探究:
(1)對(duì)于邊長(zhǎng)分別為a,b(a>b)的兩個(gè)正方形ABCD和EFGH,按圖2所示的方式擺放,連接DE,過(guò)點(diǎn)D作DM⊥DE,交AB于點(diǎn)M,過(guò)點(diǎn)M作MN⊥DM,過(guò)點(diǎn)E作EN⊥DE,MN與EN相交于點(diǎn)N;
①證明四邊形MNED是正方形,并用含a,b的代數(shù)式表示正方形MNED的面積;
②在圖2中,將正方形ABCD和正方形EFGH沿虛線剪開后,能夠拼接為正方形MNED,請(qǐng)簡(jiǎn)略說(shuō)明你的拼接方法(類比圖1,用數(shù)字表示對(duì)應(yīng)的圖形);
(2)對(duì)于n(n是大于2的自然數(shù))個(gè)任意的正方形,能否通過(guò)若干次拼接,將其拼接成為一個(gè)正方形?請(qǐng)簡(jiǎn)要說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn).且規(guī)定,正方形的內(nèi)部不包含邊界上的點(diǎn).觀察如圖所示的中心在原點(diǎn)、一邊平行于x軸的正方形:邊長(zhǎng)為1的正方形內(nèi)部有1個(gè)整點(diǎn),邊長(zhǎng)為3的正方形內(nèi)部有9個(gè)整點(diǎn),…,則邊長(zhǎng)為8的正方形內(nèi)部整點(diǎn)個(gè)數(shù)為( 。
A.64B.49C.36D.25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,O為正方形ABCD的對(duì)角線AC與BD的交點(diǎn),M、N兩點(diǎn)分別在BC與AB上,且OM⊥ON.
(1)試說(shuō)明OM=ON;
(2)試判斷CN與DM的關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案