如圖所示的直角坐標(biāo)系中,三角形ABC的頂點(diǎn)坐標(biāo)分別是A(0,0),B(7,1),C(4,5).
(1)如果將△ABC向上平移1個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到△A1B1C1,則A1的坐標(biāo)為______;B1的坐標(biāo)為______;
(2)求線段BC掃過的面積.

解:(1)根據(jù)題意,把各點(diǎn)的橫坐標(biāo)加2,縱坐標(biāo)加1得對(duì)應(yīng)點(diǎn)的坐標(biāo),即A1(2,1),B1(9,2).
(2)線段BC掃過的面積=?BCC′B′面積+?B′C′C1B1面積=1×3+2×4=11.
分析:(1)根據(jù)平移規(guī)律確定對(duì)應(yīng)點(diǎn)的坐標(biāo);
(2)線段BC掃過的面積即兩個(gè)平行四邊形(?BCC′B′與?B′C′C1B1)面積的和.
點(diǎn)評(píng):此題考查了平移規(guī)律及運(yùn)用規(guī)律解決相關(guān)問題,難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一位運(yùn)動(dòng)員在距籃下4米處跳起投籃,球運(yùn)行的路線是拋物線,當(dāng)球運(yùn)行的水平距離為2.5米時(shí),達(dá)到最大高度3.5米,然后準(zhǔn)確落入籃圈.已知籃圈中心到地面的距離為3.05米.建立如圖所示的直角坐標(biāo)系,則拋物線的表達(dá)式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

58、丁丁推鉛球的出手高度為1.6m,在如圖所示的直角坐標(biāo)系中,鉛球運(yùn)動(dòng)軌跡是拋物線y=-0.1(x-k)2+2.5,求鉛球的落點(diǎn)與丁丁的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:OE是⊙E的半徑,以O(shè)E為直徑的⊙D與⊙E的弦OA相交于點(diǎn)B,在如圖所示的直角坐標(biāo)系中,⊙E交y軸于點(diǎn)C,連接BE、AC.
(1)當(dāng)點(diǎn)A在第一象限⊙E上移動(dòng)時(shí),寫出你認(rèn)為正確的結(jié)論:
 
(至少寫出四種不同類型的結(jié)論);
(2)若線段BE、OB的長(zhǎng)是關(guān)于x的方程x2-(m+1)x+m=0的兩根,且OB<BE,OE=2,求以E點(diǎn)為頂點(diǎn)且經(jīng)過點(diǎn)B的拋物線的解析式;
(3)該拋物線上是否存在點(diǎn)P,使得△PBE是以BE為直角邊的直角三精英家教網(wǎng)角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明其理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,等腰△ABC的腰長(zhǎng)為2
2
,底邊BC=4,以BC所在的直線為x軸,BC的垂直平分線為y軸建立如圖所示的直角坐標(biāo)系,則B
 
、C
 
、A
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在邊長(zhǎng)為1的方格紙上建立如圖所示的直角坐標(biāo)系,把△ABC向下平移6個(gè)單位長(zhǎng)度,得到△A1B1C1,畫從出△A1B1C1,并作出△A1B1C1關(guān)于y軸對(duì)稱的△A2B2C2,并直接寫出點(diǎn)A2,B2,C2的坐標(biāo).
A2
-3,-2
,B2
-1,-3
,C2
-4,-4

查看答案和解析>>

同步練習(xí)冊(cè)答案