在課外興趣小組活動時,劉老師給出了如下問題:
如圖(1),已知四邊形ABCD中,AC平分∠DAB,∠DAB=60°,∠B與∠D互補(bǔ),求證:AB+AD=
3
AC.
小敏反復(fù)探索,不得其解.她想,若將四邊形ABCD特殊化,看如何解決該問題.
(1)從特殊情況入手,添加條件“∠B=∠D”,如圖(2),可證:AB+AD=
3
AC.請你完成此證明.
(2)類比(1)的問題的解決方法,在圖(1)證明AB+AD=
3
AC.
分析:(1)如果:“∠B=∠D”,根據(jù)∠B與∠D互補(bǔ),那么∠B=∠D=90°,又因為∠DAC=∠BAC=30°,因此我們可在直角三角形ADC和ABC中得出AD=AB=
3
2
AC,那么AD+AB=
3
AC.
(2)按(1)的思路,作好輔助線后,我們只要證明△CDF與△CBE全等即可得到(1)的條件.根據(jù)AAS可證兩三角形全等,DF=BE.然后按照(1)的解法進(jìn)行計算即可.
解答:(1)證明:在題圖(2)中,
∵∠B=∠D,且∠B與∠D互補(bǔ),
∴∠B=∠D=90°.
又∵AC平分∠DAB,∠DAB=60°,
∴∠CAB=∠CAD=30°,
∴AB=AC×cos∠CAB=
3
2
AC,
AD=AC×cos∠CAD=
3
2
AC,
∴AB+AD=
3
AC.

(2)證明:如圖,過C點分別作AB、AD的垂線,垂足分別為E、F.

由(1)知,AE+AF=
3
AC.
∵AC為∠BAD的平分線,CF⊥AD,CE⊥AB,
∴∠CFD=∠CEB,CE=CF.
而∠ABC與∠D互補(bǔ),∠ABC與∠CBE也互補(bǔ),
∴∠D=∠CBE,
在△CDF與△CBE中,
∠D=∠CBE
∠CFD=∠CEB
CE=CF

∴△CDF與△CBE(AAS),
∴DF=BE,
∴AB+AD=AB+(AF+FD)=(AB+BE)+AF=AE+AF=
3
AC.
點評:本題考查了由特殊到一般的探究能力.通過對特殊問題解法的類比、發(fā)散聯(lián)想,進(jìn)行創(chuàng)造性思維,從而延伸到一般問題的解題方法.解本題的關(guān)鍵是將(1)中的做法應(yīng)用到(2)中時恰當(dāng)添加輔助線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

22、閱讀理解:
課外興趣小組活動時,老師提出了如下問題:
如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或?qū)ⅰ鰽CD繞點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
感悟:解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.
(1)問題解決:
受到(1)的啟發(fā),請你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.
①求證:BE+CF>EF;
②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明;
(2)問題拓展:
如圖3,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點作一個60°角,角的兩邊分別交AB、AC于E、F兩點,連接EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課外興趣小組活動時,許老師出示了如下問題:如圖1,己知四邊形ABCD中,AC平分∠DAB,∠DAB=60°,∠B與∠D互補(bǔ),求證:AB+AD=
3
AC.小敏反復(fù)探索,不得其解.她想,若將四邊形ABCD特殊化,看如何解決該問題.
(1)特殊情況入手添加條件:“∠B=∠D”,如圖2,可證AB+AD=
3
AC;(請你完成此證明)
(2)解決原來問題受到(1)的啟發(fā),在原問題中,添加輔助線:如圖3,過C點分別作AB、AD的垂線,垂足分別為E、F.(請你補(bǔ)全證明)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

31、課外興趣小組活動時,老師提出了如下問題:
(1)如圖1,在△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或?qū)ⅰ鰽CD繞點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
[感悟]解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.
(2)解決問題:受到(1)的啟發(fā),請你證明下列命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.
求證:BE+CF>EF,若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

【閱讀理解】
課外興趣小組活動時,老師提出了如下問題:

如圖1,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到點E,使DE=AD,請根據(jù)小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB的理由是
B
B

A.SSS      B.SAS      C.AAS        D.HL
(2)求得AD的取值范圍是
C
C

A.6<AD<8   B.6≤AD≤8  C.1<AD<7  D.1≤AD≤7
【感悟】
解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個三角形中.
【問題解決】
(3)如圖2,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF. 求證:AC=BF.

查看答案和解析>>

同步練習(xí)冊答案