如圖,在中,,,,AF=10cm, AC=14cm,動(dòng)點(diǎn)E以2cm/s的速度從點(diǎn)向點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)以1cm/s的速度從點(diǎn)向點(diǎn)運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t.

(1)求證:在運(yùn)動(dòng)過(guò)程中,不管t取何值,都有;

(2)當(dāng)t取何值時(shí),全等;

(3)在(2)的前提下,若,,求。

 

【答案】

(1)證明見(jiàn)解析;(2);(3).

【解析】

試題分析:(1)由角平分線的性質(zhì)可知DF=DM,所以△AED和△DEG的面積轉(zhuǎn)化為底AE和CG的比值,根據(jù)路程=速度×?xí)r間求出AE和CG的長(zhǎng)度即可證明在運(yùn)動(dòng)過(guò)程中,不管取何值,都有SAED=2SDGC

(2)若△DFE與△DMG全等,則EF=MG,利用已知條件求出EF和MG的長(zhǎng)度,建立方程解方程即可求出運(yùn)動(dòng)的時(shí)間.

(3)利用等高三角形的面積比等于對(duì)應(yīng)底的比,即可求得答案.

試題解析:(1)證明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,

∴DF=DM,

∵SAED=AE•DF,SDGC=CG•DM,

,

∵點(diǎn)E以2cm/s的速度從A點(diǎn)向F點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)G以1cm/s的速度從C點(diǎn)向A點(diǎn)運(yùn)動(dòng),

∴AE=2tcm,CG=tcm,

,即

∴在運(yùn)動(dòng)過(guò)程中,不管取何值,都有SAED=2SDGC

(2)解:設(shè)時(shí)間為t時(shí),△DFE與△DMG全等,則EF=MG

①當(dāng)M在線段CG的延長(zhǎng)線上時(shí),

∵點(diǎn)E以2cm/s的速度從A點(diǎn)向F點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)G以1cm/s的速度從C點(diǎn)向A點(diǎn)運(yùn)動(dòng),

∴EF=AF-AE=10-2t,MG=AC-CG-AM=4-t,

即10-2t=4-t,

解得:t=6,

當(dāng)t=6時(shí),MG=-2,所以舍去;

②當(dāng)M在線段CG上時(shí),

∵點(diǎn)E以2cm/s的速度從A點(diǎn)向F點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)G以1cm/s的速度從C點(diǎn)向A點(diǎn)運(yùn)動(dòng),

∴EF=AF-AE=10-2t(cm),MG=AM-(AC-CG)=t-4(cm),

即10-2t=t-4,

解得:t=

綜上所述當(dāng)t=時(shí),△DFE與△DMG全等.

(3)∵t=,

∴AE=2t=(cm),

∵DF=DM,

∴SABD:SACD=AB:AC=BD:CD=119:126,

∵AC=14cm,

∴AB=(cm),

∴BF=AB-AF=-10=(cm),

∵SADE:SBDF=AE:BF=,SAED=28cm2,

∴SBDF=(cm2).

考點(diǎn): 1.全等三角形的判定與性質(zhì);2.三角形的面積;3.角平分線的性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在中,,是角平分線,平分

點(diǎn),經(jīng)過(guò)兩點(diǎn)的于點(diǎn),交于點(diǎn),恰為的直徑.

 

 

(1)求證:相切;

(2)當(dāng)時(shí),求的半徑.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在中,邊上的高, 是平分線。求的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在中,,平分,點(diǎn)上,以為半徑的圓,交,交,且點(diǎn)在⊙上,連結(jié),切⊙于點(diǎn)

【小題1】求證
【小題2】若,求⊙的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分6分)已知:如圖,在中,D是BC上的點(diǎn),.求AC(,結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分5分)已知:如圖,在中,,點(diǎn)上,以為圓心,長(zhǎng)為半徑的圓與分別交于點(diǎn),且
(1)判斷直線的位置關(guān)系,并證明你的結(jié)論;
(2)若,=,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案