【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時停止運(yùn)動,則此時點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為( )
A.( ,0)
B.(2,0)
C.( ,0)
D.(3,0)
【答案】C
【解析】解:過點(diǎn)B作BD⊥x軸于點(diǎn)D,
∵∠ACO+∠BCD=90°,
∠OAC+ACO=90°,
∴∠OAC=∠BCD,
在△ACO與△BCD中,
∴△ACO≌△BCD(AAS)
∴OC=BD,OA=CD,
∵A(0,2),C(1,0)
∴OD=3,BD=1,
∴B(3,1),
∴設(shè)反比例函數(shù)的解析式為y= ,
將B(3,1)代入y= ,
∴k=3,
∴y= ,
∴把y=2代入y= ,
∴x= ,
當(dāng)頂點(diǎn)A恰好落在該雙曲線上時,
此時點(diǎn)A移動了 個單位長度,
∴C也移動了 個單位長度,
此時點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為( ,0)
故選(C)
過點(diǎn)B作BD⊥x軸于點(diǎn)D,易證△ACO≌△BCD(AAS),從而可求出B的坐標(biāo),進(jìn)而可求出反比例函數(shù)的解析式,根據(jù)解析式與A的坐標(biāo)即可得知平移的單位長度,從而求出C的對應(yīng)點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將三角形向右平移3個單位長度,再向上平移2個單位長度,則平移后三個頂點(diǎn)的坐標(biāo)為( )
A.(-1,-1),(2,3),(5,1)
B.(-1,1),(3,2),(5,1)
C.(-1,1),(2,3),(5,1)
D.(1,-1),(2,2),(5,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,大正方形的邊長為4厘米,小正方形的邊長為2厘米,狀態(tài)如圖所示。大正方形固定不動,把小正方形以1厘米∕秒的速度向大正方形的內(nèi)部沿直線平移,設(shè)平移的時間為t秒,兩個正方形重疊部分的面積為S厘米2,完成下列問題:
(1)平移到1.5秒時,重疊部分的面積為 厘米2.
(2)求小正方形在平移過程中,S與t的關(guān)系式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)三次到某超市購買A、B兩種商品,其中僅有一次是由折扣的,購買數(shù)量及消費(fèi)金額如下表:
解答下列問題:
(1)第_______次購買的商品有折扣;
(2)求A、B兩種商品的原價;
(3)若購買A、B兩種商品的折扣數(shù)相同,則折扣數(shù)為______折;
(4)小明同學(xué)再次購買A、B兩種商品共10件,在(3)的折扣數(shù)的前提下,這10件商品的消費(fèi)金額不超過200元,求至少購買A商品的件數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分別是AB、AC的中點(diǎn),動點(diǎn)P從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動,速度為1cm/s,同時動點(diǎn)Q從點(diǎn)B出發(fā),沿BF方向勻速運(yùn)動,速度為2cm/s,連接PQ,設(shè)運(yùn)動時間為ts(0<t<1),則當(dāng)t=___時,△PQF為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副含 和 角的三角板 和 疊合在一起,邊 與 重合, (如圖1),點(diǎn) 為邊 的中點(diǎn),邊 與 相交于點(diǎn) ,此時線段 的長是 . 現(xiàn)將三角板 繞點(diǎn) 按順時針方向旋轉(zhuǎn)(如圖2),在 從 到 的變化過程中,點(diǎn) 相應(yīng)移動的路徑長共為 . (結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的邊長為2,以O(shè)為圓心,EF為直徑的半圓經(jīng)過點(diǎn)A,連接AE,CF相交于點(diǎn)P,將正方形OABC從OA與OF重合的位置開始,繞著點(diǎn)O逆時針旋轉(zhuǎn)90°,交點(diǎn)P運(yùn)動的路徑長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三角形ABC三個頂點(diǎn)A,B,C的坐標(biāo)分別為A(1,2),B(4,3),C(3,1).
(1)三角形A1B1C1向右平移4個單位長度,再向下平移3個單位長度,恰好得到三角形ABC,試寫出三角形A1B1C1三個頂點(diǎn)的坐標(biāo).
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB和CD相交于點(diǎn)O,在∠COB的內(nèi)部作射線OE.
(1)若∠AOC=36°,∠COE=90°,求∠BOE的度數(shù);
(2)若∠COE:∠EOB:∠BOD=4:3:2,求∠AOE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com