【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O,與斜邊AB交于點D、E為BC邊的中點,連接DE.

(1)求證:DE是⊙O的切線;

(2)填空:①若∠B=30°,AC=2,則DE=   ;

②當∠B=   °時,以O(shè),D,E,C為頂點的四邊形是正方形.

【答案】(1)證明就解析;(2)①3;②45.

【解析】試題分析:(1)運用垂徑定理、直角三角形的性質(zhì)證明∠ODE=90°即可解決問題;

(2)①直接利用銳角三角函數(shù)關(guān)系得出BC的長,再利用直角三角形的性質(zhì)得出DE的長;

②當∠B=45°時,四邊形ODEC是正方形,由等腰三角形的性質(zhì),得到∠ODA=∠A=45°,于是∠DOC=90°然后根據(jù)有一組鄰邊相等的矩形是正方形,即可得到結(jié)論.

試題解析:(1)連接OD.

∵AC是直徑,∴∠ADC=90°,∴∠CDB=90°,

又∵E為BC邊的中點,∴DE為直角△DCB斜邊的中線,∴DE=CE= .∴∠DCE=∠CDE,

∵OC=OD,∴∠OCD=∠ODC,∴∠ODC+∠CDE=∠OCD+∠DCE=∠ACB=90°,∴∠ODE=90°

∴DE是⊙O的切線.

(2)①∵∠B=30°,AC=2 ,∠BCA=90°,∴tan30°= =,解得:BC=6,

則DE=BC=3;

故答案為:3;

②當∠B=45°時,四邊形ODEC是正方形,

∵∠ACB=90°,∴∠A=45°,

∵OA=OD,∴∠ADO=45°,∴∠AOD=90°,∴∠DOC=90°,

∵∠ODE=90°,∴四邊形DECO是矩形,

∵OD=OC,∴矩形DECO是正方形.

故答案為:45.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(0,1),M(3,2),N(4,4) , 動點P從點A出發(fā),沿y
軸以每秒1個單位長的速度向上移動,且過點P的直線l:y=-x+b也隨之移動,設(shè)移動時間為 t 秒.(直線y = kx+b平移時k不變)

(1)當t=3時,求 l 的解析式;
(2)若點M,N位于l 的異側(cè),確定 t 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】|﹣9|的平方根等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)【問題發(fā)現(xiàn)】

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關(guān)系為   

(2)【拓展研究】

在(1)的條件下,如果正方形CDEF繞點C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請僅就圖2的情形給出證明;

(3)【問題發(fā)現(xiàn)】

當正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點共線時候,直接寫出線段AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=90°,OA=90cm,OB=30cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿直線立即從點B出發(fā),沿直線勻速前進攔截小球,恰好在點C處截住了小球,如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a+b=2019c+d=-5,則代數(shù)式(a-2c-2d-b=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡:(1)(5a-3b-3a-2b);(23x2-[7x-4x-3-2x2]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:

(1)△AEF≌△CEB;
(2)AF=2CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=90°,OA=90cm,OB=30cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿直線勻速前進攔截小球,恰好在點C處截住了小球.如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?

查看答案和解析>>

同步練習冊答案