如圖,拋物線的頂點(diǎn)為P(1,0),一條直線與拋物線相交于A(2,1),B(-
12
,m
)兩精英家教網(wǎng)點(diǎn).
(1)求拋物線和直線AB的解析式;
(2)若M為線段AB上的動(dòng)點(diǎn),過(guò)M作MN∥y軸,交拋物線于點(diǎn)N,連接NP、AP,試探究四邊形MNPA能否為梯形?若能,求出此點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
分析:(1)可先根據(jù)P點(diǎn)的坐標(biāo),用頂點(diǎn)式二次函數(shù)通式設(shè)出拋物線的解析式,然后將A點(diǎn)的坐標(biāo)代入拋物線中,即可求出二次函數(shù)的解析式,進(jìn)而可求得B點(diǎn)的坐標(biāo).然后根據(jù)A、B兩點(diǎn)的坐標(biāo)求出直線AB的解析式.
(2)可假設(shè)存在這樣的點(diǎn)M,若四邊形MNPA為梯形,那么只有一種可能即NP∥MA,可通過(guò)構(gòu)建相似三角形來(lái)求出N點(diǎn)的坐標(biāo).由于N點(diǎn)在拋物線上,因此可根據(jù)拋物線的解析式設(shè)出N點(diǎn)的坐標(biāo),假設(shè)直線AB與x軸的交點(diǎn)為R(R的坐標(biāo)可通過(guò)直線AB的解析式求得),過(guò)A作AS⊥x軸于S,可通過(guò)證三角形NPQ和ARS相似來(lái)得出關(guān)于NQ,AS,QP,SR的比例關(guān)系式,據(jù)此可求出N點(diǎn)的橫坐標(biāo),然后將N點(diǎn)的橫坐標(biāo)代入直線AB的解析式中即可求出M的坐標(biāo).
解答:解:(1)由題意,可設(shè)拋物線的解析式為y=a(x-1)2
∴a(2-1)2=1,
∴a=1
∴拋物線的解析式為y=x2-2x+1.(1分)
當(dāng)x=-
1
2
時(shí),m=(-
1
2
2-2×(-
1
2
)+1=
9
4

設(shè)直線AB的解析式為y=kx+b
-
1
2
k+b=
9
4
2k+b=1
,
解得
k=-
1
2
b=2

∴直線AB的解析式為y=-
1
2
x+2.

(2)假設(shè)符合條件的點(diǎn)M存在.
由題意可知,MN不平行于AP,
∴梯形的兩底只能是NP、MA.
設(shè)AB與x軸相交于點(diǎn)R,MN的延長(zhǎng)線與x軸相交于點(diǎn)Q,作AS⊥x軸于點(diǎn)S,
精英家教網(wǎng)由y=-
1
2
x+2知點(diǎn)R的坐標(biāo)為(4,0).
∵NP∥MA
∴∠NPQ=∠ARS,
∵∠NQP=∠ASR=90°
∴Rt△NPQ∽R(shí)t△ARS
NQ
AS
=
QP
SR

設(shè)N點(diǎn)的坐標(biāo)為(x,x2-2x+1),
則有
x2-2x+1
1
=
1-x
2
,
解得x=
1
2
,x=1(舍去).
當(dāng)x=
1
2
時(shí),y=-
1
2
×
1
2
+2=
7
4

∴符合條件的點(diǎn)M存在,其坐標(biāo)為(
1
2
7
4
).
點(diǎn)評(píng):本題考查了一次函數(shù)和二次函數(shù)解析式的確定、相似三角形的判定和性質(zhì)、梯形的判定和性質(zhì)等知識(shí)點(diǎn).
主要考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,拋物線的頂點(diǎn)為A(1,-4),且過(guò)點(diǎn)B(3,0).
(1)求該拋物線的解析式;
(2)將該拋物線向右平移幾個(gè)單位,可使平移后的拋物線經(jīng)過(guò)原點(diǎn)?并直接寫出平移后拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河南)如圖,拋物線的頂點(diǎn)為P(-2,2),與y軸交于點(diǎn)A(0,3).若平移該拋物線使其頂點(diǎn)P沿直線移動(dòng)到點(diǎn)P′(2,-2),點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,則拋物線上PA段掃過(guò)的區(qū)域(陰影部分)的面積為
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•峨眉山市二模)已知,如圖,拋物線的頂點(diǎn)為C(1,-2),直線y=kx+m與拋物線交于A、B兩點(diǎn),其中OA=3,B點(diǎn)在y軸上.點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)A、B不重合),過(guò)點(diǎn)P且垂直于x軸的直線與這條拋物線交于點(diǎn)E.
(1)求直線AB的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為x,求點(diǎn)E坐標(biāo)(用含x的代數(shù)式表示);
(3)點(diǎn)D是直線AB與這條拋物線對(duì)稱軸的交點(diǎn),是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的三角形與△AOB相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄂爾多斯)如圖,拋物線的頂點(diǎn)為C(-1,-1),且經(jīng)過(guò)點(diǎn)A、點(diǎn)B和坐標(biāo)原點(diǎn)O,點(diǎn)B的橫坐標(biāo)為-3.
(1)求拋物線的解析式;
(2)若點(diǎn)D為拋物線上的一點(diǎn),點(diǎn)E為對(duì)稱軸上的一點(diǎn),且以點(diǎn)A、O、D、E為
頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P是拋物線第一象限上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P,使得以P、M、A為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案