如圖1,在平面直角坐標(biāo)系中,已知點(diǎn)M的坐標(biāo)是(3,0),半徑為2的⊙M交x軸于E、F
兩點(diǎn),過(guò)點(diǎn)P(-1,0)作⊙M的切線,切點(diǎn)為點(diǎn)A,過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)C,交⊙M于
點(diǎn)B。拋物線y=ax2+bx+c經(jīng)過(guò)P、B、M三點(diǎn)。
1.(1)求該拋物線的函數(shù)表達(dá)式;(3分)
2.(2)若點(diǎn)Q是拋物線上一動(dòng)點(diǎn),且位于P、B兩點(diǎn)之間,設(shè)四邊形APQB的面積為S,點(diǎn)Q的
橫坐標(biāo)為x,求S與x之間的函數(shù)關(guān)系式,并求S的最大值和此時(shí)點(diǎn)Q的坐標(biāo);(4分)
3.(3)如圖2,將弧AEB沿弦AB對(duì)折后得到弧AE′B,試判斷直線AF與弧AE′B的位置關(guān)系,
并說(shuō)明理由。(3分)
1.(1)如圖5,依題意,可知:
點(diǎn)
∵拋物線y=ax2+bx+c經(jīng)過(guò)P、B、M三點(diǎn)
∴
解得:
∴拋物線的解析式為:
2.(2)如圖6,依題意設(shè)點(diǎn)Q的坐標(biāo)為(x,y0),
過(guò)點(diǎn)Q作QN⊥x軸交于點(diǎn)N,連接QP、QB
∵點(diǎn)Q是拋物線上一動(dòng)點(diǎn),且位于P、B兩點(diǎn)之間,
∴,-1≤x≤2
∴四邊形APQB的面積為S為:
;(其中,-1≤x≤2)
即:;(其中,-1≤x≤2)
∴ 當(dāng)時(shí),四邊形APQB的面積S有最大值,,
此時(shí),,,點(diǎn)Q的坐標(biāo)為(-1,0),
3.(3)直線AF與弧AE′B相切,理由如下:
如圖7,由(1)可知,PA是⊙M的切線,且
點(diǎn)
∴△ACP≌△ACF
∵將弧AEB沿弦AB對(duì)折后得到弧AE′B
∴PA是弧AEB的切線
∴FA是弧AE′B的切線
即:直線AF與弧AE′B相切
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:同步輕松練習(xí) 八年級(jí) 數(shù)學(xué) 上 題型:059
學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)
(1)按照這種規(guī)定填寫(xiě)下表:
(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).
(3)請(qǐng)你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題
閱讀下面的材料:
小明在研究中心對(duì)稱問(wèn)題時(shí)發(fā)現(xiàn):
如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.
如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱.
(1)請(qǐng)?jiān)趫D2中畫(huà)出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱時(shí),除了說(shuō)明P、、三點(diǎn)共線之外,還需證明;
(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com