直角梯形ABCD中,AD∥BC,AB=AD=3,邊BC, AB分別在x軸和y軸上,已知點(diǎn)C的坐標(biāo)分別為(4,0)。動(dòng)點(diǎn)P從B點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿BC方向作勻速直線運(yùn)動(dòng),同時(shí)點(diǎn)Q從D點(diǎn)出發(fā),以與P點(diǎn)相同的速度沿DA方向運(yùn)動(dòng),當(dāng)Q點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí), P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng)。設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t,
(1)求線段CD的長(zhǎng)。
(2) 連接PQ交直線AC于點(diǎn)E,當(dāng)AE : EC="1" : 2時(shí),求t的值,并求出此時(shí)△PEC的面積。
(3) 過(guò)Q點(diǎn)作垂直于AD的射線交AC于點(diǎn)M,交BC于點(diǎn)N,連接PM,
①是否存在某一時(shí)刻,使以M、P、C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?若存在 ,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由;
②當(dāng)t=         時(shí),點(diǎn)P、M、D在同一直線上。(直接寫(xiě)出)

備用圖

 
 

(1)CD= 
(2) ∵AD∥BC   ∴△AQE∽△CPE
  即 解得t=2
∴PC=BC-BP=4-2=2
∴S△PEC=PC× AB=×2×2="2"

y

 
  (3) ① 存在, 易求 MC= (t+1) ,PC=4-t

       若PC="MC" , 則 (t+1) =4-t 解得t=
若MP="MC," 則PN="CN" ,∴3-2t=1+t 解得t=
若 MP="PC," 如圖, 作PF⊥AC于點(diǎn)F

則CF:CP=CO:CA= 
= 解得t=   
②  t=1。
(1)利用直角三角形解出CD的長(zhǎng);
(2)利用△AQE∽△CPE得出,從而算出t.再根據(jù)相似三角形求出△PEC的高,然后求出△PEC的面積;
(3)① 存在,分三種情況進(jìn)行討論;②根據(jù)三點(diǎn)在一直線上的性質(zhì)得出結(jié)果。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,將一個(gè)內(nèi)角為120°的菱形紙片沿較長(zhǎng)對(duì)角線剪開(kāi),得到圖②的兩張全等的三角形紙片.將這兩張三角形紙片擺放成圖③的形式.點(diǎn)B、FC、D在同一條直線上,AB分別交DEEF于點(diǎn)P、M,ACDE于點(diǎn)N

(1)求證:△APN≌△EPM
(2)連接CP,試確定△CPN的形狀,并說(shuō)明理由.
(3)當(dāng)PAB的中點(diǎn)時(shí),求△APN與△DCN的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:點(diǎn)D在⊿ABC的邊AB上,連接 CD,∠1=∠B,AD=4,AC=6, 求:BD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在正方形ABCD中,E為AB中點(diǎn),G、F分別是AD、BC邊上的點(diǎn),若AG=1,BF=2,∠GEF
=90°,則GF的長(zhǎng)為_(kāi)_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ABC=90°,BA=BC.點(diǎn)D是AB的中點(diǎn),連接CD,過(guò)點(diǎn)B作BG丄CD,分別交GD、CA于點(diǎn)E、F,與過(guò)點(diǎn)A且垂直于的直線相交于點(diǎn)G,連接DF.
給出以下四個(gè)結(jié)論:
;②點(diǎn)F是GE的中點(diǎn);③AF=AB;④S△ABC=5S△BDF,其中正確的結(jié)論序號(hào)是  ▲  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,P為△ABC內(nèi)一點(diǎn),連接PA,PB,PC,在△PAB,△PBC和△PAC中,如果存在一個(gè)三角形與△ABC相似,那么就稱(chēng)P為△ABC的自相似點(diǎn).
已知△ABC中,∠A<∠B<∠C
(1)利用直尺和圓規(guī),在圖②中作出△ABC的自相似點(diǎn)P(不寫(xiě)作法,但需保留作圖痕跡);
(2)若△ABC的三內(nèi)角平分線的交點(diǎn)P是該三角形的自相似點(diǎn),求該三角形三個(gè)內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)學(xué)興趣小組想測(cè)量一棵樹(shù)的高度,在陽(yáng)光下,一名同學(xué)測(cè)得一根長(zhǎng)為1米的竹竿的影長(zhǎng)為米.同時(shí)另一名同學(xué)測(cè)量一棵樹(shù)的高度時(shí),發(fā)現(xiàn)樹(shù)的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖),其影長(zhǎng)為米,落在地面上的影長(zhǎng)為米,則樹(shù)高為           米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形ABCD的邊長(zhǎng)為10,內(nèi)部有6個(gè)全等的正方形,小正方形的頂點(diǎn)E、F、G、H分別落在邊AD、AB、BC、CD上,則QB的長(zhǎng)為            

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖:的邊上的一點(diǎn),,若,則的度數(shù)為    

                             

查看答案和解析>>

同步練習(xí)冊(cè)答案