精英家教網 > 初中數學 > 題目詳情
若拋物線與y軸的交點為(0,﹣3),則下列說法不正確的是【   】
A.拋物線開口向上
B.拋物線的對稱軸是x=1
C.當x=1時,y的最大值為﹣4
D.拋物線與x軸的交點為(-1,0),(3,0)
C。
∵拋物線過點(0,-3),∴!鄴佄锞的解析式為:。因此,
A、拋物線的二次項系數為1>0,拋物線的開口向上,說法正確。
B、根據拋物線的對稱軸,說法正確。
C、由A知拋物線的開口向上,二次函數有最小值,當x=1時,y的最小值為-4,而不是最大值。說法錯誤.
D、當y=0時,有,解得:x1=-1,x2=3,拋物線與x軸的交點坐標為(-1,0),(3,0)。說法正確.
故選C。
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,矩形OABC在平面直角坐標系中,O為坐標原點,點A(0,4),C(2,0),將矩形OABC繞點O按順時針方向旋轉1350,得到矩形EFGH(點E與O重合).

(1)若GH交y軸于點M,則∠FOM=      ,OM=        ;
(2)矩形EFGH沿y軸向上平移t個單位.
①直線GH與x軸交于點D,若AD∥BO,求t的值;
②若矩形EFHG與矩形OABC重疊部分的面積為S個平方單位,試求當0<t≤時,S與t之間的函數關系式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,Rt△OAB的頂點A(-2,4)在拋物線上,將Rt△OAB繞點O順時針旋轉90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標為
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖①,已知拋物線經過點A(0,3),B(3,0),C(4,3).

(1)求拋物線的函數表達式;
(2)求拋物線的頂點坐標和對稱軸;
(3)把拋物線向上平移,使得頂點落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

在平面直角坐標系xOy中,直線y=kx(k為常數)與拋物線交于A,B兩點,且A點在y軸左側,P點的坐標為(0,﹣4),連接PA,PB.有以下說法:
①PO2=PA•PB;
②當k>0時,(PA+AO)(PB﹣BO)的值隨k的增大而增大;
③當時,BP2=BO•BA;
④△PAB面積的最小值為
其中正確的是     (寫出所有正確說法的序號)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線與直線y=x交于點A,點B在直線上,∠BOA=90°.拋物線過點A,O,B,頂點為點E.

(1)求點A,B的坐標;
(2)求拋物線的函數表達式及頂點E的坐標;
(3)設直線y=x與拋物線的對稱軸交于點C,直線BC交拋物線于點D,過點E作FE∥x軸,交直線AB于點F,連接OD,CF,CF交x軸于點M.試判斷OD與CF是否平行,并說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線與x軸相交于點A、B,與y軸相交于點C,拋物線的對稱軸與x軸相交于點M.P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上).分別過點A、B作直線CP的垂線,垂足分別為D、E,連接點MD、ME.

(1)求點A,B的坐標(直接寫出結果),并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時點P的坐標;若不能,說明理由;
(3)若將“P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個動點”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時點P的坐標(直接寫出結果);若不能,說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O為原點,OC、OA所在直線為軸建立坐標系.拋物線頂點為A,且經過點C.點P在線段AO上由A向點O運動,點O在線段OC上由C向點O運動,QD⊥OC交BC于點D,OD所在直線與拋物線在第一象限交于點E.

(1)求拋物線的解析式;
(2)點E′是E關于y軸的對稱點,點Q運動到何處時,四邊形OEAE′是菱形?
(3)點P、Q分別以每秒2個單位和3個單位的速度同時出發(fā),運動的時間為t秒,當t為何值時,PB∥OD?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖所示,拋物線頂點坐標是P(1,3),則函數y隨自變量x的增大而減小的x的取值范圍是(   )
A.x>3B.x<3C.x>1D.x<1

查看答案和解析>>

同步練習冊答案