【題目】已知(a2b)29,(a2b)225,a24b2________

【答案】17

【解析】試題分析:∵(a2b)29(a2b)225,

a24b22ab9①

a24b22ab25②,

②得:2(a24b2)34,

a24b217

故答案為17

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】命題“等腰三角形兩底角相等”的逆命題是 , 這個逆命題是命題;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙內(nèi)將ABC經(jīng)過一次平移后得到ABC′,圖中標(biāo)出了點(diǎn)B的對應(yīng)點(diǎn)B′.根據(jù)下列條件,利用網(wǎng)格點(diǎn)和三角尺畫圖:

(1)補(bǔ)全ABC

(2)畫出AC邊上的中線BD;

(3)畫出AC邊上的高線BE;

(4)求ABD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k0)的圖象交于A(1,a),B兩點(diǎn).

(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);

(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A(﹣2,0),交y軸于點(diǎn)B(0,).直線y=kx過點(diǎn)A與y軸交于點(diǎn)C,與拋物線的另一個交點(diǎn)是D.

(1)求拋物線y=x2+bx+c與直線y=kx的解析式;

(2)設(shè)點(diǎn)P是直線AD下方的拋物線上一動點(diǎn)(不與點(diǎn)A、D重合),過點(diǎn)P作y軸的平行線,交直線AD于點(diǎn)M,作DEy軸于點(diǎn)E.探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(3)在(2)的條件下,作PNAD于點(diǎn)N,設(shè)PMN的周長為m,點(diǎn)P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠承接了一批紙箱加工任務(wù),用如圖1所示的長方形和正方形紙板(長方形的寬與正方形的邊長相等)加工成如圖所示的豎式與橫式兩種無蓋的長方形紙箱.(加工時接縫材料不計)

若該廠購進(jìn)正方形紙板1000張,長方形紙板2000張.問豎式紙盒,橫式紙盒各加工多少個,恰好能將購進(jìn)的紙板全部用完;

該工廠某一天使用的材料清單上顯示,這天一共使用正方形紙板50張,長方形紙板a張,全部加工成上述兩種紙盒,且120<a<136,試求在這一天加工兩種紙盒時,a的所有可能值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出命題“兩直線平行,同位角相等”的結(jié)論部分:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將點(diǎn)A(3,4)繞原點(diǎn)旋轉(zhuǎn)90°得點(diǎn)B,則點(diǎn)B坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在如圖所示的平面直角坐標(biāo)系中表示下面各點(diǎn):

A03);B50);C3,﹣5);D﹣3﹣5);E3,5);

2A點(diǎn)到原點(diǎn)的距離是   

3)將點(diǎn)Cx軸的負(fù)方向平移6個單位,它與點(diǎn)   重合.

4)連接CE,則直線CEy軸是什么位置關(guān)系?

5)點(diǎn)D分別到x、y軸的距離是多少?

查看答案和解析>>

同步練習(xí)冊答案