(2004•湖州)如圖,已知圖中每個(gè)小方格的邊長(zhǎng)為1,則點(diǎn)C到AB所在直線的距離等于   
【答案】分析:連接AC,AB,根據(jù)勾股定理可求得三角形各邊的長(zhǎng),從而得到該三角形是等腰三角形,根據(jù)等腰三角形三線合一的性質(zhì)可求得底邊AC上的高,再根據(jù)面積公式即可求得AB邊上的高.
解答:解:連接AC,BC.
根據(jù)勾股定理求得:AC=2,BC=AB=,
∵BC=AB,
∴三角形是等腰三角形,
∴AC上的高是2,
∴該三角形的面積是4,
∴AB邊上的高是=
點(diǎn)評(píng):由于發(fā)現(xiàn)該三角形是等腰三角形,其底邊上的高易求得,所以根據(jù)三角形的面積不變進(jìn)一步求得腰上的高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:選擇題

(2004•湖州)如圖,在Rt△ABC中,∠C=90°,CD⊥AB,垂足為D,AD=8,DB=2,則CD的長(zhǎng)為( )

A.4
B.16
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2004•湖州)如圖,H是⊙O的內(nèi)接銳角△ABC的高線AD、BE的交點(diǎn),過(guò)點(diǎn)A引⊙O的切線,與BE的延長(zhǎng)線相交于點(diǎn)P,若AB的長(zhǎng)是關(guān)于x的方程x2-6x+36(cos2C-cosC+1)=0的實(shí)數(shù)根.
(1)求:∠C=______度;AB的長(zhǎng)等于______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(05)(解析版) 題型:填空題

(2004•湖州)如圖,在半徑為9,圓心角為90°的扇形OAB的上有一動(dòng)點(diǎn)P,PH⊥OA,垂足為H,設(shè)G為△OPH的重心(三角形的三條中線的交點(diǎn)),當(dāng)△PHG為等腰三角形時(shí),PH的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2004•湖州)如圖,在Rt△ABC中,∠C=90°,CD⊥AB,垂足為D,AD=8,DB=2,則CD的長(zhǎng)為( )

A.4
B.16
C.2
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案