已知α,β是一元二次方程x2-4x-3=0的兩實數(shù)根,則代數(shù)式(α-3)(β-3)=   
【答案】分析:根據(jù)一元二次方程根與系數(shù)的關系,可以求得兩根之積或兩根之和,根據(jù)(α-3)(β-3)=αβ-3(α+β)+9代入數(shù)值計算即可.
解答:解:∵α,β是方程x2-4x-3=0的兩個實數(shù)根,
∴α+β=4,αβ=-3
又∵(α-3)(β-3)=αβ-3(α+β)+9
∴(α-3)(β-3)=-3-3×4+9=-6.
故填空答案:-6.
點評:此題主要考查了根與系數(shù)的關系,將根與系數(shù)的關系與代數(shù)式變形相結合解題是一種經(jīng)常使用的解題方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次x2-6x+k+1=0的兩個實數(shù)根x1,x2,
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知:關于x的一元二次方程ax2+bx+c=3的一個根為x=2,且二次函數(shù)y=ax2+bx+c的對稱軸是直線x=2,則拋物線的頂點坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(1,3)及部分圖象(如圖所示),其中圖象與橫軸的正半軸交點為(3,0),由圖象可知:
①當x
>1
>1
時,函數(shù)值隨著x的增大而減。
②關于x的一元二次不等式ax2=bx+c>0的解是
-1<x<3
-1<x<3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(-1,-3.2)及部分圖象(如圖所示),其中圖象與橫軸的正半軸交點為(2,0),由圖象可知:
①當x
<-1
<-1
時,函數(shù)值隨著x的增大而減;
②關于x的一元二次不等式ax2+bx+c>0的解是
x>2或x<-4
x>2或x<-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則一元二次不等式ax2+bx+c>0的解是
 

查看答案和解析>>

同步練習冊答案