顯示:在接受調(diào)查的8萬名網(wǎng)民中.對“網(wǎng)絡(luò)紅包 春節(jié)話動了解程度的占比方面.“較為了解 和“很了解 的網(wǎng)民共占比64%.分別占比36%和28%.在“不了解 和“只了解一兩個“的受訪網(wǎng)民中.“不了解 的網(wǎng)民人數(shù)比“只了解一兩個 的網(wǎng)民人數(shù)多25%.如圖是該咨詢公司繪制的“中國網(wǎng)民關(guān)于`網(wǎng)絡(luò)紅包’春節(jié)活動了解情況調(diào)查 統(tǒng)計圖.請根據(jù)以上信息解答下列問題:(1)在受訪的網(wǎng)民中.“不了解 和“只了解一兩個 的網(wǎng)民人數(shù)共有 萬人.其中“不了解 的網(wǎng)民人數(shù)是 萬人,(2)請將扇形統(tǒng)計圖補充完整,(3)2017除夕晚上小聰和爸爸.媽媽一起玩微信搶紅包游戲.他們約定由爸爸在家人微信群中先后發(fā)兩次“拼手氣紅包 .每次發(fā)放的紅包數(shù)是3個.每個紅包抽到的金額隨機(每兩個紅包的金額都不相等).每次誰抽到紅包的金額最大誰就是“手氣最佳 者.求兩次游戲中小聰都能獲得“手氣最佳 的概率為多少?">

【題目】“網(wǎng)絡(luò)紅包”是互聯(lián)網(wǎng)運營商、商家通過組織互聯(lián)網(wǎng)線上活動、派發(fā)紅包的互聯(lián)網(wǎng)工具,是朋友間互道祝福的表達形式之一.“網(wǎng)絡(luò)紅包”春節(jié)活動已經(jīng)逐漸深入到大眾的生活中,得到了人們較為廣泛的關(guān)注.根據(jù)某咨詢公司(2018年中國春節(jié)“網(wǎng)絡(luò)紅包”專題調(diào)查報告》顯示:在接受調(diào)查的8萬名網(wǎng)民中,對“網(wǎng)絡(luò)紅包”春節(jié)話動了解程度的占比方面,“較為了解”和“很了解”的網(wǎng)民共占比64%,分別占比36%和28%.在“不了解”和“只了解一兩個“的受訪網(wǎng)民中,“不了解”的網(wǎng)民人數(shù)比“只了解一兩個”的網(wǎng)民人數(shù)多25%.如圖是該咨詢公司繪制的“中國網(wǎng)民關(guān)于‘網(wǎng)絡(luò)紅包’春節(jié)活動了解情況調(diào)查”統(tǒng)計圖(不完整).

請根據(jù)以上信息解答下列問題:

(1)在受訪的網(wǎng)民中,“不了解”和“只了解一兩個”的網(wǎng)民人數(shù)共有   萬人,其中“不了解”的網(wǎng)民人數(shù)是   萬人;

(2)請將扇形統(tǒng)計圖補充完整;

(3)2017除夕晚上小聰和爸爸、媽媽一起玩微信搶紅包游戲,他們約定由爸爸在家人微信群中先后發(fā)兩次“拼手氣紅包”,每次發(fā)放的紅包數(shù)是3個,每個紅包抽到的金額隨機(每兩個紅包的金額都不相等),每次誰抽到紅包的金額最大誰就是“手氣最佳”者,求兩次游戲中小聰都能獲得“手氣最佳”的概率為多少?

【答案】(1) 2.88,1.6;(2)見解析;(3).

【解析】分析:(1)①用8×不了解只了解一兩個所對應(yīng)的百分比求出不了解只了解一兩個的人數(shù);②設(shè)只了解一兩個的網(wǎng)民人數(shù)為x萬人,則不了解的網(wǎng)民人數(shù)為1.25x,

根據(jù)只了解一兩個的網(wǎng)民人數(shù)+不了解的網(wǎng)民人數(shù)=2.88萬人列方程求解;

(2)計算出只了解一兩個的網(wǎng)民人數(shù)和不了解的網(wǎng)民人數(shù)所占的百分比,然后補全統(tǒng)計圖;

(3)先列出樹狀圖,用符合條件的情況數(shù)除以所有情況數(shù)即可.

詳解:(1)不了解只了解一兩個所對應(yīng)的百分比為1﹣64%=36%,

不了解只了解一兩個的網(wǎng)民人數(shù)為8×36%=2.88萬人,

設(shè)只了解一兩個的網(wǎng)民人數(shù)為x萬人,則不了解的網(wǎng)民人數(shù)為1.25x,

x+1.25x=2.88,

解得:x=1.28,

1.25x=1.6,

不了解的網(wǎng)民人數(shù)是1.6萬人,

故答案為:2.88,1.6;

(2)“不了解的網(wǎng)民人數(shù)占總?cè)藬?shù)的百分比為×100%=20%,

只了解一兩個的網(wǎng)民人數(shù)占總?cè)藬?shù)的百分比為×100%=16%,

補全扇形圖如下:

(3)設(shè)手氣最佳的紅包為A、其它兩個紅包為B、C,

畫樹狀圖如下:

由樹狀圖可知,共有9種等可能結(jié)果,其中小聰兩次抽到手氣最佳的結(jié)果有1種,所以兩次游戲中小聰都能獲得手氣最佳的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的面積為8cm2,AP垂直∠B的平分線BPP,則PBC的面積為( 。

A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是昌平區(qū)20191月份每天的最低和最高氣溫,觀察此圖,下列說法正確的是( )

A.1月份中,最高氣溫為10℃,最低氣溫為-2℃

B.10號至16號的氣溫中,每天溫差最小為7℃

C.每天的最高氣溫均高于0℃,最低氣溫均低于0℃

D.每天的最高氣溫與最低氣溫都是具有相反意義的量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為4的正方形ABCD,頂點A與坐標(biāo)原點重合,一反比例函數(shù)圖象過頂點C,動點P以每秒1個單位速度從點A出發(fā)沿AB方向運動,動點Q同時以每秒4個單位速度從D點出發(fā)沿正方形的邊DCCBBA方向順時針折線運動,當(dāng)點P與點Q相遇時停止運動,設(shè)點P的運動時間為t

1)求出該反比例函數(shù)解析式;

2)連接PD,當(dāng)以點Q和正方形的某兩個頂點組成的三角形和△PAD全等時,求點Q的坐標(biāo);

3)用含t的代數(shù)式表示以點Q、P、D為頂點的三角形的面積s,并指出相應(yīng)t的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=(k≠0)的圖象與一次函數(shù)y=﹣x+1的圖象交于A(﹣2,m),B(n,﹣1)兩點.

(1)求反比例函數(shù)的解析式;

(2)連接OA,OB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù))的圖象與軸交于兩點(點在點的左側(cè)),與軸交于點,且,,頂點為.

1)求二次函數(shù)的解析式;

2)點為線段上的一個動點,過點軸的垂線,垂足為,若,四邊形的面積為,求關(guān)于的函數(shù)解析式,并寫出的取值范圍;

3)探索:線段上是否存在點,使為直角三角形?如果存在,求出點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖平面直角坐標(biāo)系中,O(0,0),A(4,4 ),B(8,0).將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE=,則CE:DE的值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果有一列數(shù),從這列數(shù)的第2個數(shù)開始,每一個數(shù)與它的前一個數(shù)的比等于同一個非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(Geometric Sequences).這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q0).

1)觀察一個等比列數(shù)1,,…,它的公比q   ;如果ann為正整數(shù))表示這個等比數(shù)列的第n項,那么a18   ,an   

2)如果欲求1+2+4+8+16++230的值,可以按照如下步驟進行:

S1+2+4+8+16++230

等式兩邊同時乘以2,得2S2+4+8+16++32++231

式,得2SS2311

即(21S2311

所以

請根據(jù)以上的解答過程,求3+32+33++323的值;

3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項開始每一項與前一項之比的常數(shù)為q,請用含a1,q,n的代數(shù)式表示an;如果這個常數(shù)q1,請用含a1,q,n的代數(shù)式表示a1+a2+a3++an

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用無刻度的直尺和圓規(guī)作出符合要求的圖形.(注:不要求寫作法,但保留作圖痕跡)

1)如圖,已知線段AB,作一個ABC,使得∠ACB90°;(只需畫一個即可)

2)如圖,已知線段MN,作一個MPN,使得∠MPN90°sinM.(只需畫一個即可)

1 2

查看答案和解析>>

同步練習(xí)冊答案