【題目】如圖,一個幾何體的主視圖和左視圖都是底邊長為6,高為4的等腰三角形,俯視圖是一個圓,那么這個幾何體的側(cè)面積是(
A.12π
B.24π
C. π
D.15π

【答案】D
【解析】解:這個幾何是圓錐,高為4,底面直徑為6,則底面半徑=3,底面周長=6π,由勾股定理得,母線長=5,側(cè)面面積= ×6π×5=15π.故選D.
【考點精析】通過靈活運用圓錐的相關(guān)計算和由三視圖判斷幾何體,掌握圓錐側(cè)面展開圖是一個扇形,這個扇形的半徑稱為圓錐的母線;圓錐側(cè)面積S=πrl;V圓錐=1/3πR2h.;在三視圖中,通過主視圖、俯視圖可以確定組合圖形的列數(shù);通過俯視圖、左視圖可以確定組合圖形的行數(shù);通過主視圖、左視圖可以確定行與列中的最高層數(shù)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:兩個等邊三角形ABDBCE,連結(jié)AECD

求證:(1AE=CD;

2AEDC之間的夾角為60°;

3AECD的交點設(shè)為H,BH平分∠AHC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC在直角坐標(biāo)系中的位置如圖所示,

(1)請你寫出△ABC各點的坐標(biāo),

(2)求出S△ABC的面積,

(3)若把△ABC向上平移3個單位,再向右平移2個單位得△A′B′C′,在圖中畫出△A′B′C′,并寫出A′、B′、C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某次人才交流會上,應(yīng)聘人數(shù)和招聘人數(shù)分別居前5位的行業(yè)列表如下:

如果用同一行業(yè)應(yīng)聘人數(shù)與招聘人數(shù)比值的大小來衡量該行業(yè)的就業(yè)情況,那么根據(jù)表中數(shù)據(jù),對上述行業(yè)的就業(yè)情況判斷正確的是(  )

A. 計算機(jī)行業(yè)好于其它行業(yè) B. 貿(mào)易行業(yè)好于化工行業(yè)

C. 機(jī)械行業(yè)好于營銷行業(yè) D. 建筑行業(yè)好于物流行業(yè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,E是等邊三角形ABC的邊AB所在直線上一點,D是邊BC所在直線上一點,且DC不重合,若ECED.則稱D為點C關(guān)于等邊三角形ABC的反稱點,點E稱為反稱中心.

在平面直角坐標(biāo)系xOy中,

1)已知等邊三角形AOC的頂點C的坐標(biāo)為(2,0),點A在第一象限內(nèi),反稱中心E在直線AO上,反稱點D在直線OC上.

①如圖2,若E為邊AO的中點,在圖中作出點C關(guān)于等邊三角形AOC的反稱點D,并直接寫出點D的坐標(biāo):   ;

②若AE2,求點C關(guān)于等邊三角形AOC的反稱點D的坐標(biāo);

2)若等邊三角形ABC的頂點為Bn,0),Cn+1,0),反稱中心E在直線AB上,反稱點D在直線BC上,且2AE3.請直接寫出點C關(guān)于等邊三角形ABC的反稱點D的橫坐標(biāo)t的取值范圍:   (用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠BOPOP上點C,點A(在點C的右邊),李玲現(xiàn)進(jìn)行如下操作:以點O為圓心,OC長為半徑畫弧,交OB于點D,連接CD;以點A為圓心,OC長為半徑畫弧MN,交OA于點M以點M為圓心,CD長為半徑畫弧,交弧MN于點E,連接ME,操作結(jié)果如圖所示,下列結(jié)論不能由上述操作結(jié)果得出的是( )

A. CD∥ME B. OB∥AE C. ∠ODC=∠AEM D. ∠ACD=∠EAP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABCD,E分別是AB,AC邊上的點,△ADC≌△ADC',△AEB≌△AEB',C'DEB'∥BCBE,CD交于點F,若∠BACx°,則∠BFC的大小是_____°.(用含x的式子表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,平移三角形ABC,使點A平移到點,畫出平移后的三角形;

(2)(1)的條件下,指出點A,B,C 的對應(yīng)點,并指出AB,BC,AC的對應(yīng)線段和∠A,∠B, C的對應(yīng)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形容器中,高為1.2m,底面周長為1m,在容器內(nèi)壁離容器底部0.3m的點B處有一蚊子,此時一只壁虎正好在容器外壁,離容器上沿0.3m與蚊子相對的點A處,則壁虎捕捉蚊子的最短距離為 m(容器厚度忽略不計).

查看答案和解析>>

同步練習(xí)冊答案