(2001•安徽)如圖,AB是⊙O的直徑,l1,l2是⊙O的兩條切線,且l1∥AB∥l2,若P是PA、PB上一點,直線PA、PB交l2于點C、D,設⊙O的面積為S1,△PCD的面積為S2,則=( )

A.π
B.
C.
D.
【答案】分析:要求面積比,就要先分別求出它們的面積,根據(jù)面積公式計算即可.
解答:解:設圓的半徑是a,
則S1=πa2,AB=2a,
根據(jù)AB∥CD,
=,
因而CD=2AB=4a,
CD邊上的高等于圓的直徑,
因而△PCD的面積為S2=CD•2a=4a2,
因而==
故選C.
點評:正確利用圓的半徑表示出圓面積以及三角形的面積是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(03)(解析版) 題型:解答題

(2001•安徽)如圖,自卸車車廂的一個側面是矩形ABCD,AB=3米,BC=0.5米,車廂底部距離地面1.2米.卸貨時,車廂傾斜的角度θ=60°,問此時車廂的最高點A距離地面多少米?(精確到1m)

查看答案和解析>>

科目:初中數(shù)學 來源:2001年安徽省中考數(shù)學試卷(解析版) 題型:解答題

(2001•安徽)如圖所示,花園邊墻上有一寬為1m的矩形門ABCD,量得門框?qū)蔷AC的長為2m.現(xiàn)準備打掉部分墻體,使其變?yōu)橐訟C為直徑的圓弧形門,問要打掉墻體的面積是多少?
(精確到0.1m2,π≈3.14,≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源:2001年安徽省中考數(shù)學試卷(解析版) 題型:選擇題

(2001•安徽)如圖,AB是⊙O的直徑,l1,l2是⊙O的兩條切線,且l1∥AB∥l2,若P是PA、PB上一點,直線PA、PB交l2于點C、D,設⊙O的面積為S1,△PCD的面積為S2,則=( )

A.π
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年安徽省中考數(shù)學試卷(解析版) 題型:填空題

(2001•安徽)如圖所示,要把角鋼(1)彎成120°的鋼架(2),則在角鋼(1)上截去的缺口是    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年安徽省中考數(shù)學試卷(解析版) 題型:填空題

(2001•安徽)如圖,長方體中,與棱AA′平行的面是   

查看答案和解析>>

同步練習冊答案