已知如圖,拋物線y=ax2+bx-a的圖像與x軸交于A、B兩點,點A在點B的左邊,頂點坐標為C(0,-4),直線x=m(m>1)與x軸交于點D。
(1)求拋物線的解析式;
(2)在直線x=m(m>1)上有一點P(點P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求P點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,試問:拋物線y=ax2+bx-a是否存在一點Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點Q,請求出m的值;如果不存在,請簡要說明理由。
解:(1)∵拋物線y=ax2+bx-a的頂點坐標為C(0,-4),
∴b=0,a=4,
∴拋物線的解析式為y=4x2-4;
(2)設P(m,n),由4x2-4=0,
∴x=±1,
∴A(-1,0),B(0,1),
∵△OBC∽△PBD,
若∠OCB=∠PBD,則,

,此時,
若∠OCB=∠BPD,則,∴,
∴n=4(m-1),此時P(m,4(m-1));
(3)假設拋物線存在點Q(x,y)使四邊形ABPQ為平行四邊形,
當P(m,4m-4)時,AP的中點R的坐標為:
又∵R又是BQ的中點,
,Q(m-2,4(m-1)),
 ∵Q在拋物線上,
∴4(m-1)=4(m-2)2-4,
∴m-1=m2-4m+4-1,
∴m2-5m+4=0,
∴m=4或m=1(舍去),
當P點坐標為時,同理,,,
∴16m2-65m+49=0,m=或m=1(舍去),
∴當m=4或時,AP與BQ互相平分,四邊形ABPQ是平行四邊形,
∴m=4或為所求。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,拋物線y=ax2+bx+c過點A(-1,0),且經(jīng)過直線y=x-3與坐標軸的兩個交點B、C.
(1)求拋物線的解析式;
(2)求拋物線的頂點坐標;
(3)若點M在第四象限內(nèi)的拋物線上,且OM⊥BC,垂足為D,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,拋物線y=ax2+bx-a的圖象與x軸交于A、B兩點,點A在點B的左邊,頂點坐標為C(0,-4),直精英家教網(wǎng)線x=m(m>1)與x軸交于點D.
(1)求拋物線的解析式;
(2)在直線x=m(m>1)上有一點P(點P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求P點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,試問:拋物線y=ax2+bx-a是否存在一點Q,使得四邊形ABPQ為平行四邊形?如果存在這樣的點Q,請求出m的值;如果不存在,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,拋物線y=x2-x-1與y軸交于C點,以原點O為圓心,以OC為半徑作⊙O,交x軸于A、B兩點,交y軸于另一點D.設點P為拋物線y=x2-x-1上的一點,作PM⊥x軸于點M,求使△PMB∽△ADB時的P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0)和點B,化簡
(a+c)2
+
(c-b)2
的結(jié)果為①c,②b,③b-a,④a-b+2c,其中正確的有( 。
A、一個B、兩個C、三個D、四個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,拋物線y=ax2+bx+c與x軸相交于B(1,0)、C(4,0)兩點,與y軸的正半軸相交于A點,過A、B、C三點的⊙P與y軸相切于點A.
(1)請求出點A坐標和⊙P的半徑;
(2)請確定拋物線的解析式;
(3)M為y軸負半軸上的一個動點,直線MB交⊙P于點D.若△AOB與以A、B、D為頂點的三角形相似,求MB•MD的值.(先畫出符合題意的示意圖再求解).

查看答案和解析>>

同步練習冊答案