(2009•孝感模擬)在一次越野賽跑中,小明離出發(fā)地1600米,小剛離出發(fā)地1450米,隨后張老師開始計時并畫出了兩人離出發(fā)地的路程S(單位:米)與時間t(單位:秒)之間的關(guān)系如圖所示,下列說法:
①小剛100秒時追上小明,且在離出發(fā)地1745米處;
②小剛的速度是小明速度的2倍;
③小剛比小明早100秒到達終點,且終點離出發(fā)地2050米;
④小明離出發(fā)地的路程S(單位:米)與時間t(單位:秒)之間的關(guān)系式是S=3t+1600.
正確的有( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:根據(jù)圖象,第100秒小剛追上小明,小剛比小明多跑150米;都到達終點,仍然是小剛比小明多跑150米,設(shè)出兩人速度,列二元一次方程組即可求出兩人的速度,速度求出,其他問題都可迎刃而解.
解答:解:設(shè)小明和小剛的速度分別為a、b米/秒,
根據(jù)圖象得,
解得;
①1600+1.5×100=1750米,小剛100秒時追上小明應(yīng)在離出發(fā)地1750米處,故本選項錯誤;
②因為,所以b=2a,故本選項正確;
③因為1450+3×200=2050米,所以小剛比小明早100秒到達終點,且終點離出發(fā)地2050米,正確;
④小明的S與t的關(guān)系式應(yīng)為S=1.5t+1600,故本選項錯誤.
所以②③兩項正確.
故選B.
點評:根據(jù)函數(shù)圖象列出方程組求出兩人的速度是解本題的關(guān)鍵也是難點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年甘肅省蘭州市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

(2009•孝感模擬)宏達紡織品有限公司準(zhǔn)備投資開發(fā)A、B兩種新產(chǎn)品,通過市場調(diào)研發(fā)現(xiàn):如果單獨投資A種產(chǎn)品,則所獲利潤(萬元)與投資金額x(萬元)之間滿足正比例函數(shù)關(guān)系:yA=kx;如果單獨投資B種產(chǎn)品,則所獲利潤(萬元)與投資金額x(萬元)之間滿足二次函數(shù)關(guān)系:yB=ax2+bx.根據(jù)公司信息部的報告,yA,yB(萬元)與投資金額x(萬元)的部分對應(yīng)值(如下表)
x15
yA0.63
yB2.810
(1)填空:yA=______;yB=______;
(2)如果公司準(zhǔn)備投資20萬元同時開發(fā)A、B兩種新產(chǎn)品,設(shè)公司所獲得的總利潤為w(萬元),試寫出w與某種產(chǎn)品的投資金額x之間的函數(shù)關(guān)系式;
(3)請你設(shè)計一個在(2)中能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少萬元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年甘肅省蘭州市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

(2009•孝感模擬)定理:若x1、x2是關(guān)于x的一元二次方程x2+mx+n=0的兩實根,則有x1+x2=-m,x1x2=n.請用這一定理解決問題:已知x1、x2是關(guān)于x的一元二次方程x2-2(k+1)x+k2+2=0的兩實根,且(x1+1)(x2+1)=8,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年甘肅省蘭州市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:填空題

(2009•孝感模擬)已知關(guān)于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有兩個不相等的實數(shù)根,則m的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年甘肅省蘭州市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:選擇題

(2009•孝感模擬)方程x(x+1)=(x+1)的根為( )
A.x1=1,x2=-1
B.x1=0,x2=-1
C.x=0
D.x=-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省福州市延安中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•孝感模擬)宏達紡織品有限公司準(zhǔn)備投資開發(fā)A、B兩種新產(chǎn)品,通過市場調(diào)研發(fā)現(xiàn):如果單獨投資A種產(chǎn)品,則所獲利潤(萬元)與投資金額x(萬元)之間滿足正比例函數(shù)關(guān)系:yA=kx;如果單獨投資B種產(chǎn)品,則所獲利潤(萬元)與投資金額x(萬元)之間滿足二次函數(shù)關(guān)系:yB=ax2+bx.根據(jù)公司信息部的報告,yA,yB(萬元)與投資金額x(萬元)的部分對應(yīng)值(如下表)
x15
yA0.63
yB2.810
(1)填空:yA=______;yB=______;
(2)如果公司準(zhǔn)備投資20萬元同時開發(fā)A、B兩種新產(chǎn)品,設(shè)公司所獲得的總利潤為w(萬元),試寫出w與某種產(chǎn)品的投資金額x之間的函數(shù)關(guān)系式;
(3)請你設(shè)計一個在(2)中能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少萬元.

查看答案和解析>>

同步練習(xí)冊答案