如圖,一條公路的轉(zhuǎn)變處是一段圓。磮D中弧CD,點(diǎn)O是弧CD的圓心),其中CD=600米,E為弧CD上一點(diǎn),且OE⊥CD,垂足為F,OF=米,則這段彎路的長(zhǎng)度為
A.200π米B.100π米C.400π米D.300π米
A

試題分析:設(shè)這段彎路的半徑為R米,
∵OE⊥CD,CD=600米,∴由垂徑定理得CF=CD=×600=300。
又∵OF=米,∴由勾股定理可得OC2=CF2+OF2, 即,解得R=600(米)。
,∴∠COF=30°!所對(duì)的圓心角為60°。
∴這段彎路()的長(zhǎng)度為:(米)。故選A。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知A(8,0),B(0,6),⊙M經(jīng)過原點(diǎn)O及點(diǎn)A、B.

(1)求⊙M的半徑及圓心M的坐標(biāo);
(2)過點(diǎn)B作⊙M的切線l,求直線l的解析式;
(3)∠BOA的平分線交AB于點(diǎn)N,交⊙M于點(diǎn)E,求點(diǎn)N的坐標(biāo)和線段OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

四個(gè)命題:
①三角形的一條中線能將三角形分成面積相等的兩部分;
②有兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形全等;
③點(diǎn)P(1,2)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)坐標(biāo)為(-1,-2);
④兩圓的半徑分別是3和4,圓心距為d,若兩圓有公共點(diǎn),則
其中正確的是
A.①②B.①③C.②③D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

用一個(gè)圓心角為120°,半徑為2的扇形作一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的底面圓半徑為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,某窗戶有矩形和弓形組成,已知弓形的跨度AB=3cm,弓形的高EF=1cm,現(xiàn)計(jì)劃安裝玻璃,請(qǐng)幫工程師求出所在圓O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,AB是⊙O的弦,⊙O的半徑為10,OE、OF分別交AB于點(diǎn)E、F,OF的延長(zhǎng)線交⊙O于點(diǎn)D,且AE=BF,∠EOF=60°.

(1)求證:△OEF是等邊三角形;
(2)當(dāng)AE=OE時(shí),求陰影部分的面積.(結(jié)果保留根號(hào)和π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示⊙O中,已知∠BAC=∠CDA=20°,則∠ABO的度數(shù)為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2013年四川攀枝花3分)一個(gè)圓錐的左視圖是一個(gè)正三角形,則這個(gè)圓錐的側(cè)面展開圖的圓心角等于【   】
A.60°B.90°C.120°D.180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,點(diǎn)C在以AB為直徑的半圓上,∠CAB的平分線AD交BC于點(diǎn)D,⊙O經(jīng)過A、D兩點(diǎn),且圓心O在AB上.
(1)求證:BD是⊙O的切線.
(2)若,求⊙O的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案