(2007•防城港)如圖,在銳角△ABC中,AB>AC,AD⊥BC于D,以AD為直徑的⊙O分別交AB,AC于E,F(xiàn),連接DE,DF.
(1)求證:∠EAF+∠EDF=180°;
(2)已知P是射線DC上一個動點,當點P運動到PD=BD時,連接AP,交⊙O于G,連接DG.設(shè)∠EDG=∠α,∠APB=∠β,那么∠α與∠β有何數(shù)量關(guān)系?試證明你的結(jié)論.[在探究∠α與∠β的數(shù)量關(guān)系時,必要時可直接運用(1)的結(jié)論進行推理與解答]
【答案】分析:(1)由直徑對的圓周角是直角和四邊形的內(nèi)角和是360度可證得∠EAF+∠EDF=180°;
(2)證得△ABD≌△APD后,可得到∠EAG+2∠β=180°,再由(1)可得∠α=2∠β.
解答:(1)證明:在圓內(nèi)接四邊形AEDF中,
AD為直徑,
∴∠AED=∠AFD=90°
又∠AED+∠AFD+∠EAF+∠EDF=360°
∴∠EAF+∠EDF=360°-(∠AED+∠AFD)=180°(4分)

(2)解:∠α=2∠β,理由如下:
如圖,
在△ABD與△APD中,
AD⊥BP,且BD=DP,AD=AD
∴△ABD≌△APD(SAS)
∴∠B=∠APD=∠β(2分)
在△ABP中∠EAG+∠B+∠APD=180°,
則∠EAG+2∠β=180°
由(1)知∠EAG+∠EDG=180°,
則∠EAG+∠α=180°
即∠α=2∠β.(4分)
點評:本題第(1)小題實際是圓內(nèi)接四邊形的性質(zhì):對角互補的證明;第(2)小題是它的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2007•防城港)已知函數(shù)y=-x+5,y=,它們的共同點是:①函數(shù)y隨x的增大而減少;②都有部分圖象在第一象限;③都經(jīng)過點(1,4),其中錯誤的有( )
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:選擇題

(2007•防城港)已知函數(shù)y=-x+5,y=,它們的共同點是:①函數(shù)y隨x的增大而減少;②都有部分圖象在第一象限;③都經(jīng)過點(1,4),其中錯誤的有( )
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:初中數(shù)學 來源:2007年廣西玉林市中考數(shù)學試卷(解析版) 題型:解答題

(2007•防城港)如圖,在直角坐標系中,O為原點,拋物線y=x2+bx+3與x軸的負半軸交于點A,與y軸的正半軸交于點B,tan∠ABO=,頂點為P.
(1)求拋物線的解析式;
(2)若拋物線向上或向下平移|k|個單位長度后經(jīng)過點C(-5,6),試求k的值及平移后拋物線的最小值;
(3)設(shè)平移后的拋物線與y軸相交于D,頂點為Q,點M是平移的拋物線上的一個動點.請?zhí)骄浚寒旤cM在何位置時,△MBD的面積是△MPQ面積的2倍求出此時點M的坐標.友情提示:拋物線y=ax2+bx+c(a≠0)的對稱軸是,頂點坐標是

查看答案和解析>>

科目:初中數(shù)學 來源:2007年廣西防城港市中考數(shù)學試卷(解析版) 題型:解答題

(2007•防城港)某化妝公司每月付給銷售人員的工資有兩種方案.
方案一:沒有底薪,只拿銷售提成;
方案二:底薪加銷售提成.
設(shè)x(件)是銷售商品的數(shù)量,y(元)是銷售人員的月工資.如圖所示,y1為方案一的函數(shù)圖象,y2為方案二的函數(shù)圖象.已知每件商品的銷售提成方案二比方案一少7元.從圖中信息解答如下問題(注:銷售提成是指從銷售每件商品得到的銷售費中提取一定數(shù)量的費用):
(1)求y1的函數(shù)解析式;
(2)請問方案二中每月付給銷售人員的底薪是多少元?
(3)如果該公司銷售人員小麗的月工資要超過1000元,那么小麗選用哪種方案最好,至少要銷售商品多少件?

查看答案和解析>>

科目:初中數(shù)學 來源:2007年廣西防城港市中考數(shù)學試卷(解析版) 題型:選擇題

(2007•防城港)已知函數(shù)y=-x+5,y=,它們的共同點是:①函數(shù)y隨x的增大而減少;②都有部分圖象在第一象限;③都經(jīng)過點(1,4),其中錯誤的有( )
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

同步練習冊答案