【題目】某校在蘇州園林研學時,校綜合實踐活動小組的同學欲測量公園內(nèi)一棵樹的高度,他們在這棵樹的正前方一座樓亭前的臺階上點處測得樹頂端的仰角為,朝著這棵樹的方向走到臺階下的點,測得樹頂端的仰角為.已知點的高度,臺階的坡度為 (),三點在同一條直線上.請根據(jù)以上條件求出樹的高度(側傾器的高度忽略不計).

【答案】樹高為9

【解析】

過點AAFDEF,可得四邊形ABEF為矩形,設DE=x,在RtDCERtABC中分別表示出CE,BC的長度,求出DF的長度,然后在RtADF中表示出AF的長度,根據(jù)AF=BE,代入解方程求出x的值即可.

如圖,過點,則四邊形為矩形,

米,設,

,

中,

,解得().

答:樹高為9.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某市農(nóng)林種植專家指導貧困戶種植紅梨和青棗,收獲的紅梨和青棗優(yōu)先進入該市水果市場.已知某水果經(jīng)銷商購進了紅梨和青棗兩種水果各10箱,分配給下屬的甲、乙兩個零售店(分別簡稱甲店、乙店)銷售.預計每箱水果的盈利情況如表

紅梨/

青棗/

甲店

22

34

乙店

18

26

1)若甲、乙兩店各配貨10箱,其中甲店配紅梨2箱,青棗8箱;乙店配紅梨8箱,青棗2箱,請你計算出經(jīng)銷商能盈利多少元?

2)若甲、乙兩店各配貨10箱,且在保證乙店盈利不小于200元的條件下,請你設計出使水果經(jīng)銷商盈利最大的配貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點,FAD延長線上一點,且DF=BE

1)求證:CE=CF

2)若點GAD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A、C、F在坐標軸上,EOA的中點,四邊形AOCB是矩形,四邊形BDEF是正方形,若點C的坐標為(30),則點D的坐標為(  )

A. 1,2.5B. 1,1+ C. 1,3D. 1,1+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,過ABC三點的⊙OAD于點E,連接BE、CEBEBC

1)求證:BEC∽△CED;

2)若BC10,DE3.6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點E為矩形ABCDAD上一點,點PQ同時從點B出發(fā),點P沿BE→ED→DC運動到點C停止,點Q沿BC運動到點C停止,它們的運動速度都是1cm/s.設P,Q出發(fā)t秒時,BPQ的面積為y cm2,已知yt的函數(shù)關系的圖象如圖2(曲線OM為拋物線的一部分).則下列結論:①AD=BE=5cm;②當0t≤5時,;③直線NH的解析式為y=t+27 ④若ABEQBP相似,則t=秒, 其中正確結論的個數(shù)為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,現(xiàn)有一張邊長為4的正方形紙片ABCD,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.

(1)求證:APB=BPH;

(2)當點P在邊AD上移動時,PDH的周長是否發(fā)生變化?并證明你的結論;

(3)設AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關系式,試問S是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九(1)班開展數(shù)學活動,李明和張華兩位同學合作用測角儀測量學校旗桿的高度,李明站在B點測得旗桿頂端E點的仰角為45°,張華站在DD點在直線FB上)測得旗桿頂端E點仰角為15°,已知李明和張華相距(BD30米,李明的身高(AB1.6米,張華的身高(CD1.75米,求旗桿的高EF的長.(結果精確到0.1.參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高學生書水平.我市舉辦了首屆漢字聽寫大賽,經(jīng)選拔后有50名學生參加決賽,這50名學生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分.根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如下:

組別

成績x

頻數(shù)(人數(shù))

1

25≤x30

4

2

30≤x35

8

3

35≤x40

16

4

40≤x45

a

5

45≤x50

10

請結合圖表完成下列各題:

1)求表中a的值,并把頻數(shù)分布方圖補充完整;

2)第510名同學中,有4名男同學,現(xiàn)將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小宇與小強兩名男同學能分在同一組的概率.

查看答案和解析>>

同步練習冊答案