設(shè)直線y=kx+b與拋物線y=ax2的兩個交點的橫坐標分別為x1和x2,且直線與x軸交點的橫坐標為x3,求證:數(shù)學(xué)公式

解:由題意得x1和x2為方程kx+b=ax2的兩個根,即ax2-kx-b=0,
;
;
∵直線與x軸交點的橫坐標為:x3=-,
=-;

分析:先將直線y=kx+b與拋物線y=ax2聯(lián)立,構(gòu)成一元二次方程,求出兩根積與兩根和的表達式;然后將欲證等式的左邊通分,轉(zhuǎn)化為兩根積與兩根和的形式,將以上兩表達式代入得到等式左邊的值;再根據(jù)直線解析式求出與x的交點橫坐標,結(jié)論得證.
點評:此題考查了函數(shù)與方程的關(guān)系,證明時利用一元二次方程根與系數(shù)的關(guān)系將原式轉(zhuǎn)化,得到關(guān)于k、b的表達式是證明的關(guān)鍵.證明思路可簡單表達為:抓兩頭,湊中間.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,⊙O1與⊙O2外切于點O,以直線O1O2為x軸,O為坐標原點,建立平面直角坐標系.在x軸上方的兩圓的外公切線AB與⊙O1相切于點A,與⊙O2相切于點B,直線AB交y軸于點c,若OA=3
3
,OB=3.
(1)求經(jīng)過O1、C、O2三點的拋物線的解析式;
(2)設(shè)直線y=kx+m與(1)中的拋物線交于M、N兩點,若線段MN被y軸平分,求k的值;
(3)在(2)的條件下,點D在y軸負半軸上.當點D的坐標為何值時,四邊形M精英家教網(wǎng)DNC是矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)直線y=kx+b與拋物線y=ax2的兩個交點的橫坐標分別為x1和x2,且直線與x軸交點的橫坐標為x3,求證:
1
x1
+
1
x2
=
1
x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,⊙O1與⊙O2外切于點O,以直線O1O2為x軸,O為坐標原點,建立平面直角坐標系.在x軸上方的兩圓的外公切線AB與⊙O1相切于點A,與⊙O2相切于點B,直線AB交y軸于點c,若OA=3數(shù)學(xué)公式,OB=3.
(1)求經(jīng)過O1、C、O2三點的拋物線的解析式;
(2)設(shè)直線y=kx+m與(1)中的拋物線交于M、N兩點,若線段MN被y軸平分,求k的值;
(3)在(2)的條件下,點D在y軸負半軸上.當點D的坐標為何值時,四邊形MDNC是矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:競賽輔導(dǎo):二次函數(shù)的圖象與性質(zhì)(解析版) 題型:解答題

設(shè)直線y=kx+b與拋物線y=ax2的兩個交點的橫坐標分別為x1和x2,且直線與x軸交點的橫坐標為x3,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•哈爾濱)已知:如圖,⊙O1與⊙O2外切于點O,以直線O1O2為x軸,O為坐標原點,建立平面直角坐標系.在x軸上方的兩圓的外公切線AB與⊙O1相切于點A,與⊙O2相切于點B,直線AB交y軸于點c,若OA=3,OB=3.
(1)求經(jīng)過O1、C、O2三點的拋物線的解析式;
(2)設(shè)直線y=kx+m與(1)中的拋物線交于M、N兩點,若線段MN被y軸平分,求k的值;
(3)在(2)的條件下,點D在y軸負半軸上.當點D的坐標為何值時,四邊形MDNC是矩形?

查看答案和解析>>

同步練習(xí)冊答案