【題目】如圖,拋物線 y=ax2+bx+ca≠0)經(jīng)過(guò)點(diǎn)A(-3,0)、B(1,0)、C(-2,1),交y軸于點(diǎn)M.
(1)求拋物線的表達(dá)式;
(2)D為拋物線在第二象限部分上的一點(diǎn),作DE垂直x軸于點(diǎn)E,交線段AM于點(diǎn)F,求線段DF長(zhǎng)度的最大值,并求此時(shí)點(diǎn)D的坐標(biāo);
(3)拋物線上是否存在一點(diǎn)P,作PN垂直x軸于點(diǎn)N,使得以點(diǎn)P、A.N為頂點(diǎn)的三角形與△MAO相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:由題意可知 .解得 .

∴拋物線的表達(dá)式為y= .


(2)

解:將x=0代入拋物線表達(dá)式,得y=1.∴點(diǎn)M的坐標(biāo)為(0,1).

設(shè)直線MA的表達(dá)式為y=kx+b,則

.解得k= ,b=1.∴直線MA的表達(dá)式為y= x+1.

設(shè)點(diǎn)D的坐標(biāo)為( ),則點(diǎn)F的坐標(biāo)為( ).

DF=

= .

當(dāng) 時(shí),DF的最大值為 .

此時(shí) ,即點(diǎn)D的坐標(biāo)為( ).


(3)

存在點(diǎn)P,使得以點(diǎn)P、A.N為頂點(diǎn)的三角形與△MAO相似.

在Rt△MAO中,AO=3MO,要使兩個(gè)三角形相似,由題意可知,點(diǎn)P不可能在第一象限.

① 設(shè)點(diǎn)P在第二象限時(shí),∵點(diǎn)P不可能在直線MN上,∴只能PN=3NM,

,即 .

解得m=-3(舍去)或m=-8.又-3<M<0,故此時(shí)滿足條件的點(diǎn)不存在.

② 當(dāng)點(diǎn)P在第三象限時(shí),∵點(diǎn)P不可能在直線MN上,∴只能PN=3NM,

,即 .

解得m=-3或m=8.此時(shí)點(diǎn)P的坐標(biāo)為(-8,,15).

③ 當(dāng)點(diǎn)P在第四象限時(shí),

若AN=3PN時(shí),則-3 ,即 .

解得m=-3(舍去)或m=2.

當(dāng)m=2時(shí), .此時(shí)點(diǎn)P的坐標(biāo)為(2,- ).

若PN=3NA,則- ,即 .

解得m=-3(舍去)或m=10,此時(shí)點(diǎn)P的坐標(biāo)為(10,,39).

綜上所述,滿足條件的點(diǎn)P的坐標(biāo)為(-8,,15)、(2,- )、(10,,39).


【解析】(1)把三個(gè)點(diǎn)的坐標(biāo)代入二次函數(shù)解析式,求出a、b、c的值;
(2)表示出D、F兩點(diǎn)的坐標(biāo)和DF的長(zhǎng)度,然后根據(jù)二次函數(shù)的性質(zhì)求出最值;
(3)利用三角形的相似性進(jìn)行解答。
【考點(diǎn)精析】利用二次函數(shù)的概念和二次函數(shù)的圖象對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一般地,自變量x和因變量y之間存在如下關(guān)系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù);二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,E為CD上一點(diǎn),分別以EA,EB為折痕將兩個(gè)角(∠D,∠C)向內(nèi)折疊,點(diǎn)C,D恰好落在AB邊的點(diǎn)F處.若AD=2,BC=3,則EF的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點(diǎn)P是△ABC邊上一動(dòng)點(diǎn),沿B→A→C的路徑移動(dòng),過(guò)點(diǎn)P作PD⊥BC于點(diǎn)D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知矩形ABCD中,AB=60cm,BC=90cm.點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度沿AB運(yùn)動(dòng):同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以20cm/s的速度沿BC運(yùn)動(dòng).當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(s).

(1)當(dāng)t=s時(shí),△BPQ為等腰三角形;
(2)當(dāng)BD平分PQ時(shí),求t的值;
(3)如圖②,將△BPQ沿PQ折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為E,PE、QE分別與AD交于點(diǎn)F、G.探索:是否存在實(shí)數(shù)t,使得AF=EF?如果存在,求出t的值:如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E在邊AD上,以BE為折痕,將△ABE向上翻折,點(diǎn)A正好落在CD上的點(diǎn)F處.若△FDE的周長(zhǎng)為5,△FCB的周長(zhǎng)為17,則FC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,CD⊥AB于點(diǎn)C,交半圓于點(diǎn)E,DF切半圓于點(diǎn)F.已知∠AEF=135°.
(1)求證:DF∥AB;
(2)若OC=CE,BF= ,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋里裝有2個(gè)紅球,1個(gè)白球,1個(gè)黃球,它們除顏色外其余都相同.
(1)求從袋中摸出一個(gè)球是黃球的概率.
(2)摸出一個(gè)球,記下顏色后不放回,攪拌均勻,再摸出1個(gè)球,求兩次摸出的球恰好顏色不同的概率(要求畫樹狀圖或列表).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2﹣2x﹣3,點(diǎn)P在該函數(shù)的圖象上,點(diǎn)P到x軸、y軸的距離分別為d1、d2 . 設(shè)d=d1+d2 , 下列結(jié)論中:
①d沒(méi)有最大值;
②d沒(méi)有最小值;
③﹣1<x<3時(shí),d隨x的增大而增大;
④滿足d=5的點(diǎn)P有四個(gè).
其中正確結(jié)論的個(gè)數(shù)有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用為0.4萬(wàn)元,乙隊(duì)為0.25萬(wàn)元,要使這次的綠化總費(fèi)用不超過(guò)8萬(wàn)元,至少應(yīng)安排甲隊(duì)工作多少天?

查看答案和解析>>

同步練習(xí)冊(cè)答案