如圖,在下面直角坐標(biāo)系中,已知A(0,2),B(3,0),C(3,4)三點,
(1)求三角形ABC的面積;
(2)如果在第二象限內(nèi)有一點P(m,數(shù)學(xué)公式),請用含m的式子表示四邊形ABOP的面積.
(3)在(2)的條件下,是否存在點P,使四邊形ABOP的面積與△ABC的面積相等?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

解:(1)已知點A(0,2),B(3,0),C(3,4),
過A點作BC邊上的高,交BC于點H,
則三角形ABC的面積為:S=BC•AH=×4×3=6;

(2)四邊形ABOP的面積可以看作是△APO和△AOB的面積和,
∵P在第二象限,∴m<0,SAPOB=S△AOB+SAPO=+×(-m)×2=3-m.
故四邊形ABOP的面積為3-m;

(3)當(dāng)四邊形ABOP的面積與△ABC的面積相等時,
即3-m=6,得m=-3,
此時P點坐標(biāo)為:(-3,),
存在P點,使四邊形ABOP的面積與△ABC的面積相等.
分析:(1)將A,B,C坐標(biāo)在直角坐標(biāo)系中表示出來,由三角形面積公式即可求解,(2)因為P在第二象限,將四邊形ABOP的面積表示成三角形APO和三角形AOB的面積和,即可求解,(3)當(dāng)四邊形ABOP的面積與△ABC的面積相等時,即3-m=6,得m=-3,即可進行求解.
點評:本題考查了坐標(biāo)與圖形性質(zhì)及三角形的面積公式,難度較大,關(guān)鍵根據(jù)題意畫出圖形,認真分析解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖(1),在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE.容易證得:CE=CF;
(1)在圖1中,若G在AD上,且∠GCE=45°.試猜想GE、BE、GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)運用(1)中解答所積累的經(jīng)驗和知識,完成下面兩題:
①如圖(2),在四邊形ABCD中∠B=∠D=90°,BC=CD,點E,點G分別是AB邊,AD邊上的動點.若∠BCD=α°,∠ECG=β°,試探索當(dāng)α和β滿足什么關(guān)系時,圖(1)中GE、BE、GD三線段之間的關(guān)系仍然成立,并說明理由.
②在平面直角坐標(biāo)中,邊長為1的正方形OABC的兩頂點A、C分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABC繞O點順時針旋轉(zhuǎn),當(dāng)A點第一次落在直線y=x上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點M,BC邊交x軸于點N(如圖(3)).設(shè)△MBN的周長為p,在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:解題升級  解題快速反應(yīng)一典通  九年級級數(shù)學(xué) 題型:044

數(shù)學(xué)課上,老師出示圖和下面條件:

如圖,在直角坐標(biāo)平面內(nèi),O為坐標(biāo)原點,A點坐標(biāo)為(1,0),點B在x軸上且在點A的右側(cè),AB=OA.過點A和B作x軸的垂線,分別交二次函數(shù)y=x2的圖像于點C和D.直線OC交BD于點M,直線CD交y軸于點H.記點C、D的橫坐標(biāo)分別為xC、xD,點H的縱坐標(biāo)為yH

同學(xué)發(fā)現(xiàn)兩個結(jié)論:①S△CMD∶S梯形ABMC=2∶3;②數(shù)值相等關(guān)系:xC·xD=-yH

(1)請你驗證結(jié)論①和結(jié)論②成立;

(2)請你研究:如果將上述條件“A點坐標(biāo)為(1,0)”改為“A點坐標(biāo)為(t,0)(t>0)”,其他條件不變,結(jié)論①是否仍成立?(請說明理由)

(3)進一步研究:如果將上述條件“A點坐標(biāo)為(1,0)”改為“A點坐標(biāo)為(t,0)(t>0)”,又將條件“y=x2”改為“y=ax2(a>0)”,其他條件不變,那么xC、xD和yH有怎樣的數(shù)值關(guān)系?(寫出結(jié)果并說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖(1),在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE.容易證得:CE=CF;
(1)在圖1中,若G在AD上,且∠GCE=45°.試猜想GE、BE、GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)運用(1)中解答所積累的經(jīng)驗和知識,完成下面兩題:
①如圖(2),在四邊形ABCD中∠B=∠D=90°,BC=CD,點E,點G分別是AB邊,AD邊上的動點.若∠BCD=α°,∠ECG=β°,試探索當(dāng)α和β滿足什么關(guān)系時,圖(1)中GE、BE、GD三線段之間的關(guān)系仍然成立,并說明理由.
②在平面直角坐標(biāo)中,邊長為1的正方形OABC的兩頂點A、C分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABC繞O點順時針旋轉(zhuǎn),當(dāng)A點第一次落在直線y=x上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點M,BC邊交x軸于點N(如圖(3)).設(shè)△MBN的周長為p,在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省鹽城市建湖縣上岡實驗初中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖(1),在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE.容易證得:CE=CF;
(1)在圖1中,若G在AD上,且∠GCE=45°.試猜想GE、BE、GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)運用(1)中解答所積累的經(jīng)驗和知識,完成下面兩題:
①如圖(2),在四邊形ABCD中∠B=∠D=90°,BC=CD,點E,點G分別是AB邊,AD邊上的動點.若∠BCD=α°,∠ECG=β°,試探索當(dāng)α和β滿足什么關(guān)系時,圖(1)中GE、BE、GD三線段之間的關(guān)系仍然成立,并說明理由.
②在平面直角坐標(biāo)中,邊長為1的正方形OABC的兩頂點A、C分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABC繞O點順時針旋轉(zhuǎn),當(dāng)A點第一次落在直線y=x上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點M,BC邊交x軸于點N(如圖(3)).設(shè)△MBN的周長為p,在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?請證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案