如圖所示,已知OE⊥OF,直線AB經(jīng)過點O,若∠AOF=2∠AOE,則∠BOF=
120°
120°
分析:根據(jù)垂直的定義得到∠EOF=90°,然后根據(jù)∠AOF=2∠AOE列式求出∠AOF的度數(shù),再根據(jù)平角等于180°列式進(jìn)行計算即可求解.
解答:解:∵OE⊥OF,
∴∠EOF=90°,
∵∠AOF=2∠AOE,
∴∠EOF=∠AOE+∠AOF=
1
2
∠AOF+∠AOF=90°,
解得∠AOF=60°,
∴∠BOF=180°-60°=120°.
故答案為:120°.
點評:本題考查了角度計算,鄰補(bǔ)角的和等于180°,垂直的定義,根據(jù)已知條件求出∠AOF的度數(shù)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖所示,已知OE⊥OF,直線AB過點O,則∠BOF-∠AOE=
90°
;若∠AOF=2∠AOE,則∠BOF=
120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知OE是∠AOC的平分線,OD是∠BOC的平分線.
(1)若∠AOC=120°,∠BOC=β,求∠DOE;
 

(2)若∠AOC=α,∠BOC=β(α>β),求∠BOE.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知OE是∠AOC的平分線,OD是∠BOC的平分線.
(1)若∠AOC=120°,∠BOC=β,求∠DOE;______;
(2)若∠AOC=α,∠BOC=β(α>β),求∠BOE.______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:填空題

如圖所示:已知OE⊥OF直線AB經(jīng)過點O,則∠BOF-∠AOE=(    ),若∠AOF=2∠AOE,則∠BOF=(    )。

查看答案和解析>>

同步練習(xí)冊答案