精英家教網 > 初中數學 > 題目詳情
如圖,在菱形紙片ABCD中,兩對角線AC,BD長分別為16,12,折疊紙片使DO邊落在邊DA上,則折痕DP的長為( 。
分析:首先設O點的對應點為E,連接PE,由菱形的性質,可求得OD,OA與AD的長,由折疊的性質,根據勾股定理可得方程:即(8-x)2=42+x2,繼而求得答案.
解答:解:設O點的對應點為E,連接PE,
由折疊的性質可得:PE=OP,DE=OD,
∵四邊形ABCD是菱形,
∴AC⊥BD,OA=
1
2
AC=
1
2
×16=8,OB=
1
2
BD=
1
2
×12=6,
∴AD=
OA2+OD2
=10,
設OP=x,則PE=x,AE=AD-DE=10-6=4,AP=OA-OP=8-x,
在Rt△APE中,AP2=AE2+PE2,
即(8-x)2=42+x2,
解得:x=3,
即OP=3,
∴DP=
OP2+OD2
=3
5

故選A.
點評:此題考查了折疊的性質、菱形的性質以及勾股定理.此題難度適中,注意掌握輔助線的作法,注意數形結合與方程思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖①,將菱形紙片AB(E)CD(F)沿對角線BD(EF)剪開,得到△ABD和△ECF,固定△ABD,并把△ABD與△ECF疊放在一起

(1)操作:如圖②,將△ECF的頂點F固定在△ABD的BD邊上的中點處,將△ECF繞點F在BD的上方左右旋轉,設旋轉時FC交BA于H(不與點B重合),EF交DA于G(不與點D重合),求證:BH·GD=BF2

(2)操作:如圖③,△ECF的頂點F在△ABD的BD邊上滑動(不與點B、D重合),且CF如終過點A,過點A作AG∥CE,交EF于G,連接DG

探究:FD+DG=       ,并請證明你的結論

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖①,將菱形紙片AB(E)CD(F)沿對角線BD(EF)剪開,得到△ABD和△ECF,固定△ABD,并把△ABD與△ECF疊放在一起
(1)操作:如圖②,將△ECF的頂點F固定在△ABD的BD邊上的中點處,將△ECF繞點F在BD的上方左右旋轉,設旋轉時FC交BA于H(不與點B重合),EF交DA于G(不與點D重合),求證:BH·GD=BF2
(2)操作:如圖③,△ECF的頂點F在△ABD的BD邊上滑動(不與點B、D重合),且CF如終過點A,過點A作AG∥CE,交EF于G,連接DG
探究:FD+DG=      ,并請證明你的結論
 

查看答案和解析>>

科目:初中數學 來源:2011年初中畢業(yè)升學考試(湖南岳陽卷)數學 題型:解答題

如圖①,將菱形紙片AB(E)CD(F)沿對角線BD(EF)剪開,得到△ABD和△ECF,固定△ABD,并把△ABD與△ECF疊放在一起

(1)操作:如圖②,將△ECF的頂點F固定在△ABD的BD邊上的中點處,將△ECF繞點F在BD的上方左右旋轉,設旋轉時FC交BA于H(不與點B重合),EF交DA于G(不與點D重合),求證:BH·GD=BF2

(2)操作:如圖③,△ECF的頂點F在△ABD的BD邊上滑動(不與點B、D重合),且CF如終過點A,過點A作AG∥CE,交EF于G,連接DG

探究:FD+DG=       ,并請證明你的結論

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數學 來源:湖南省中考真題 題型:解答題

如圖①,將菱形紙片AB(E)CD(F)沿對角線BD(EF)剪開,得到△ABD和△ECF,固定△ABD,并把△ABD與△ECF疊放在一起。
(1)操作:如圖②,將△ECF的頂點F固定在△ABD的BD邊上的中點處,△ECF繞點F在BD邊上方左右旋轉,設旋轉時FC交BA于點H(H點不與B點重合),FE交DA于點G(G點不與D點重合),求證:BH·GD=BF2;
(2)操作:如圖③,△ECF的頂點F在△ABD的BD邊上滑動(F點不與B、D點重合),且CF始終經過點A,過點A作AG∥CE,交FE于點G,連接DG,探究:FD+DG=______,請予證明。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖①.將菱形紙片AB(E)CD(F)沿對角線BD(EF)剪開,得到△ABD和△ECF.固定△ABD,并把△ABD與△ECF疊放在—起.

  (1)操作:如圖②,將△ECF的頂點F固定在△ABD的BD邊上的中點處,△ECF繞點F在BD邊上方左右旋轉,設旋轉時FC交BA于點H(H點不與B點重合),FE交DA于點G(G點不與D點重合).

    求證:

 (2)操作:如圖③,△ECF的頂點F在△ABD的BD邊上滑動(F點不與B、D點重合),

    且CF始終經過點A,過點A作AG∥CE。交FE于點G,連接DG。

  探究:_________.請予證明.

查看答案和解析>>

同步練習冊答案