如圖(1)的矩形紙片折疊,B、C兩點恰好重合落在AD邊上的點P處,如圖(2),已知∠MPN=90º,PM=3,PN=4,那么矩形ABCD的周長為 。
28.8
解析考點:翻折變換(折疊問題).
分析:根據(jù)勾股定理,得MN=5,進而可得出BC的長,根據(jù)直角三角形的面積公式的兩種表示方法,可求出AB的長,根據(jù)矩形的周長=2(AB+BC)即可得出答案.
解答:解:由題意得,∠MPN=90°,PM=3cm,PN=4cm,
在RT△PMN中,MN2=PM2+PN2,
∴MN=5,BC=PM+PN+MN=3+4+5=12,
根據(jù)直角三角形的面積公式得,AB===2.4,
則矩形ABCD的周長=2(AB+BC)=28.8.
故答案為:28.8.
點評:本題考查了翻折變換的知識,本題的解答利用了折疊的性質(zhì),折疊前后圖形的形狀和大小不變,對應(yīng)邊和對應(yīng)角相等及勾股定理,另外要注意掌握直角三角形的面積的兩種表示方法.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com